
SSL/TLS

EJ Jung

Early Version of SSL (Simplified)

 Bob’s reasoning: I must be talking to Alice because…

• Whoever signed NB knows Alice’s private key… Only Alice knows
her private key… Alice must have signed NB… NB is fresh and
random and I sent it encrypted under KAB… Alice could have
learned NB only if she knows KAB… She must be the person who
sent me KAB in the first message...

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB
(“Alice”, sigAlice(NB))

fresh session key

encryptKAB
(NB)

fresh random number

Breaking Early SSL

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob

• Information signed by Alice is not sufficiently explicit

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

encryptKCB
(“Alice”, sigAlice(NB))

What is SSL / TLS?

Transport Layer Security protocol, version 1.0

• De facto standard for Internet security

• “The primary goal of the TLS protocol is to provide
privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers

Based on Secure Sockets Layers protocol, ver 3.0

• Same protocol design, different algorithms

Deployed in nearly every Web browser

slide 4

SSL / TLS in the Real World

slide 5

Application-Level Protection

slide 6

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT
against IP-level threats (spoofing, SYN
flood, DDoS by data flood)

History of the Protocol

 SSL 1.0
• Internal Netscape design, early 1994?

• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994

• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

TLS 1.0
• Internet standard based on SSL 3.0, January 1999

• Not interoperable with SSL 3.0
– TLS uses HMAC instead of MAC; can run on any port

slide 7

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC

TLS version 1.0 is described in RFC 2246

 Intended to be a self-contained definition of the
protocol

• Describes the protocol in sufficient detail for readers
who will be implementing it and those who will be
doing protocol analysis

• Mixture of informal prose and pseudo-code

slide 8

Evolution of the SSL/TLS RFC

slide 9

TLS Basics

TLS consists of two protocols

• Familiar pattern for key exchange protocols

Handshake protocol

• Use public-key cryptography to establish a shared
secret key between the client and the server

Record protocol

• Use the secret key established in the handshake
protocol to protect communication between the client
and the server

We will focus on the handshake protocol

slide 10

TLS Handshake Protocol

Two parties: client and server

Negotiate version of the protocol and the set of
cryptographic algorithms to be used

• Interoperability between different implementations of
the protocol

Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

Use public keys to establish a shared secret

slide 11

Handshake Protocol Structure

slide 12

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S [Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

ClientHello

slide 13

C

ClientHello

S

Client announces (in plaintext):
 Protocol version he is running
 Cryptographic algorithms he supports

ClientHello (RFC)

struct {

 ProtocolVersion client_version;

 Random random;

 SessionID session_id;

 CipherSuite cipher_suites;

 CompressionMethod compression_methods;

} ClientHello

slide 14

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g.,

RSA or Diffie-Hellman)

ServerHello

slide 15

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
 Highest protocol version supported by
 both client and server
 Strongest cryptographic suite selected
 from those offered by the client

ServerKeyExchange

slide 16

C

Versions, suites, Ns,
ServerKeyExchange

S Server sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

ClientKeyExchange

slide 17

C

Versions, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

ClientKeyExchange (RFC)

struct {

 select (KeyExchangeAlgorithm) {

 case rsa: EncryptedPreMasterSecret;

 case diffie_hellman: ClientDiffieHellmanPublic;

 } exchange_keys

} ClientKeyExchange

struct {

 ProtocolVersion client_version;

 opaque random[46];

} PreMasterSecret
slide 18

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

“Core” SSL 3.0 Handshake

slide 19

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Version Rollback Attack

slide 20

C

Versions=2.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated

• “Cipher suite rollback” attack is possible

Weak MAC construction

 SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is
not authenticated

• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode

No support for certificate chains or non-RSA
algorithms, no handshake while session is open

slide 21

“Chosen-Protocol” Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

New version must be backward-compatible

• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability

• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version early

Many protocols had “version rollback” attacks

• SSL, SSH, GSM (cell phones)

slide 22

Version Check in SSL 3.0

slide 23

C

Versions=3.0, suites, Ns,
sigca(S,Ks),
“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal to
the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

SSL/TLS Record Protection

slide 24

Use symmetric keys
established in handshake protocol

