Stream Cipher

EJ Jung
ejung@cs.usfca.edu
Basic Problem

Given: both parties already know the same secret

Goal: send a message confidentially

How is this achieved in practice?

Any communication system that aims to guarantee confidentiality must solve this problem
One-Time Pad

Key is a random bit sequence as long as the plaintext

Encrypt by bitwise XOR of plaintext and key:
\[\text{ciphertext} = \text{plaintext} \oplus \text{key} \]

Decrypt by bitwise XOR of ciphertext and key:
\[\text{ciphertext} \oplus \text{key} = (\text{plaintext} \oplus \text{key}) \oplus \text{key} = \text{plaintext} \]

Cipher achieves **perfect secrecy** if and only if there are as many possible keys as possible plaintexts, and every key is equally likely
(Claude Shannon)
Advantages of One-Time Pad

Easy to compute
- Encryption and decryption are the same operation
- Bitwise XOR is very cheap to compute

As secure as theoretically possible
- Given a ciphertext, all plaintexts are equally likely, regardless of attacker’s computational resources
- ...as long as the key sequence is truly random
 - True randomness is expensive to obtain in large quantities
- ...as long as each key is same length as plaintext
 - But how does the sender communicate the key to receiver?
Problems with One-Time Pad

- Key must be as long as plaintext
 - Impractical in most realistic scenarios
 - Still used for diplomatic and intelligence traffic

- Does not guarantee integrity
 - One-time pad only guarantees confidentiality
 - Attacker cannot recover plaintext, but can easily change it to something else

- Insecure if keys are reused
 - Attacker can obtain XOR of plaintexts
Stream Ciphers

- One-time pad
 \[\text{Ciphertext}(\text{Key}, \text{Message}) = \text{Message} \oplus \text{Key} \]
 - Key must be a random bit sequence as long as message

- Idea: replace “random” with “pseudo-random”
 - Encrypt with pseudo-random number generator (PRNG)
 - PRNG takes a short, truly random secret seed (key) and expands it into a long “random-looking” sequence
 - E.g., 128-bit key into a 10^6-bit pseudo-random sequence

- Ciphertext(\text{Key}, \text{Message}) = \text{Message} \oplus \text{PRNG}(\text{Key})
 - Message processed bit by bit, not in blocks
Properties of Stream Ciphers

- Usually very fast
 - Used where speed is important: WiFi, SSL, DVD

- Unlike one-time pad, stream ciphers do not provide perfect secrecy
 - Only as secure as the underlying PRNG
 - If used properly, can be as secure as block ciphers

- PRNG must be unpredictable
 - Given the stream of PRNG output (but not the seed!), it’s hard to predict what the next bit will be
 - If PRNG(unknown seed)\(=b_1...b_i\), then \(b_{i+1}\) is “0” with probability \(\frac{1}{2}\), “1” with probability \(\frac{1}{2}\)
Weaknesses of Stream Ciphers

- No integrity
 - Associativity & commutativity: \((X \oplus Y) \oplus Z = (X \oplus Z) \oplus Y\)
 - \((M_1 \oplus \text{PRNG}(\text{key})) \oplus M_2 = (M_1 \oplus M_2) \oplus \text{PRNG}(\text{key})\)

- Known-plaintext attack is very dangerous if keystream is ever repeated
 - Self-cancellation property of XOR: \(X \oplus X = 0\)
 - \((M_1 \oplus \text{PRNG}(\text{key})) \oplus (M_2 \oplus \text{PRNG}(\text{key})) = M_1 \oplus M_2\)
 - If attacker knows \(M_1\), then easily recovers \(M_2\)
 - Most plaintexts contain enough redundancy that knowledge of \(M_1\) or \(M_2\) is not even necessary to recover both from \(M_1 \oplus M_2\)
Stream Cipher Terminology

- Seed of pseudo-random generator often consists of *initialization vector (IV)* and *key*
 - IV is usually sent with the ciphertext
 - The key is a secret known only to the sender and the recipient, not sent with the ciphertext

- The pseudo-random bit stream produced by PRNG (IV,key) is referred to as *keystream*

- Encrypt message by XORing with keystream
 - ciphertext = message \oplus keystream
• The register is *seeded* with an initial value.

• At each clock tick, the feedback function is evaluated using the input from the *tapped bits*. The result is shifted into the leftmost bit of the register. The rightmost bit is shifted into the output.