
Tor Anonymity 
Network & Traffic 

Analysis	


Presented by Peter Likarish	





Tor: The Second 
Generation Onion 

Router	


Dingledine, Mathewson, Syverson	


Proceedings of USENIX Security ‘04	



This is NOT the presenter’s original work. This talk reviews:	



Available at: http://www.usenix.org/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf!



What is Tor?	


•  Sender/Responder anonymity network	



•  Circuit-based overlay network	



•  Low-latency	



•  2nd gen aims: 	



•  Perfect forward secrecy, congestion 
control, directory servers, integrity 
checking, location hidden servers...	





Overlay Networks	



= computer	


= link	





Overlay Networks	



= Overlay (Tor) nodes	


= link	





Overlay Networks	



= Tor node	


= secure link	





Tor Terminology	



Onion Router	



Onion Proxy	



Initiator	

 Responder	



Attacker	


Introduction 
point	



Directory Server	



Rendezvous Point	





Basic Tor ideas	



•  Each OR maintains TLS connection with the 
other ORs	



•  OPs get directory of ORs from Trusted 
Directory Server	



•  OP builds circuit of ORs. Default length: 3 
ORs. 	





Tor Threat Model	



• What type of adversary does Tor attempt 
to protect users against?	



•  Typical threat:	



•  Global Passive Adversary	



•  Tor’s threat:	



•  Partial-view passive adversary	





Partial-View Adversary	



•  Goal: Identify Initiator and Responder	



•  Can observe a portion of entire traffic	



•  Can generate, modify and delete traffic	



•  Can operate Onion routers (ORs) or 
compromise a % of ORs	





Threat Model 
Controversy	



• Weaker adversary, truly guarantee 
anonymity?	



•  Is this adversary realistic and dangerous?	



•  Does it matter? 	





1st Goal: Initiator 
Anonymity	



•  Initiator wants to contact Responder 
(website, etc) without Responder or any 
attacker knowing their identity.	





Building a Circuit	


•  1. I Gets list of ORs from 

Directory Server	



External attacker	



2. I Randomly selects an 
OR (entry point)	



3. I Randomly selects an 
OR, extends circuit	



4. I Randomly selects a 
final OR, (exit point)	



5. I Contacts R	



I	

 R	





Circuit Details	



•  Tor uses SOCKS proxy	



•  Creating & extending circuit requires Public 
Key Crypto	



•  Communicating over circuit = Diffie-
Helman (symmetric crypto)	



•  Can multiplex TCP connections over 
circuit, amortize cost of Public Key Crypto	



•  Rotate circuit to prevent linkability	





Circuit Details Cont’d	



Figure 1 from Dingledine et al.	





Cells: Transport over Circuits	



• 512 bytes	


• Header:	


• Circuit ID	


• Command	



• Create, extend, destroy circuit	


• relay data, relay begin, relay teardown	



• Payload: encrypted payload	





Onion Routing	



{{{payload}ORk,3}ORk,2}ORk,1	

I	



{{payload}ORk,3}ORk,2	

OR1	



{payload}ORk,3	

OR2	



payload	

OR3	



ORk,i = Ephemeral DH key for circuit	





Malicious Onion Routers	



I	

 R	


In general, circuits 
are secure if there 

is one non-
malicious OR in 

the circuit 	





Malicious Entry/Exit Points	



I	

 R	



If entry/exit points 
collude, they know 

that I and R are using 
Tor. Can conduct 

timing analysis to try 
and link I/R	



A colluding clique 
of size m can 

observe (m/N)2	



of the traffic	





“Leaky-pipe” Circuits	



I	

 R1	



Multiple possible exit points from circuit	



R2	





2nd Goal: Responder 
Anonymity	

•  Also known as Location Hidden Servers	



•  High-level view:	



•  Responders publish Introduction Points 
(IPs)	



•  Users contact IPs and select Rendezvous 
Point (RP)	



•  User and Responder establish circuit 
through RP	





2nd Goal: Responder 
Anonymity	



IP	



IP	



RP	





What Tor is/does	


•  Stream integrity checking (TLS)	



•  Forward Secrecy 	



•  after circuit demolished, traffic 
unreadable	



•  Rate limiting/fairness	



•  Application transparent	





What Tor isn’t/doesn’t	


•  Steganographic	



•  Does not conceal who is connected	



•  Prevent end-to-end timing attacks	



•  Do protocol normalization. No app-level 
anonymization (cookies/http info)	





Low-Cost Traffic 
Analysis of Tor	



Murdoch and Danezis	


IEEE Symp. on Security and Privacy ‘05	



This is NOT the presenter’s original work. This talk reviews:	



Available at: http://ieeexplore.ieee.org.proxy.lib.uiowa.edu/xpls/abs_all.jsp?arnumber=1425067!



Goal	


•  Show that even within Tor’s limited threat 

model, traffic analysis/timing attacks are 
possible.	



•  Intuition: Use the anonymity network as an 
oracle to infer network load.	



•  Assume encrypted tunnels effectively hide 
bit patterns.	





How: Covert Side 
Channels	



•  Covert side-channels	



•  Extra sources of information, does not 
“break” security used in algorithm.	



•  In this case, timing attack	





Idea behind attack	



•  Use the timing signature of an anonymous 
stream to track the stream through Tor. 	



•  Because Tor is low-latency, it does not 
engage in traffic-shaping or “mixing” (re-
ordering packets from different streams).	



•  Streams pass through Tor more or less 
unaltered.	





Incoming streams	



X	

X	

X	

X	

X	

X	

X	

X	

X	



X	

X	



X	

X	

X	

X	

X	

X	

X	



X	

X	

X	

X	



Multiplexed over circuit	





Why it works	


•  Tor nodes select which cell to route using 

a round robin of all streams rather than 
explicit mixing.	



•  Key: Load on a Tor node affects the latency 
of all connection streams through the 
node.	



•  Compare change in latencies to known 
traffic patterns	





Attack Set-up	



I	



We want to 
observe who 
I is talking to	



(dotted = 
hidden 
circuit)	



1.	



1. Malicious 
OR joins Tor 

network	


OR	



Dest	



2. Attacker 
controls/

corrupts a 
server that 
Tor users 

talk to	



3.	



3. User 
establishes 
link with 
corrupt 
server	



4. Dest returns 
traffic to I 

according to 
selected 
pattern	



5. OR sends probe traffic to each 
legitimate OR, if latency is correlated with 

signal, I is using that router	



2.	





Details	



•  Signal = bursty	



•  Corrupt server transmits for 10-25 sec	



•  Corrupt server is quiet for 30-75	



•  Corrupt OR measures latency of probe 
traffic. If it is monitoring an OR through 
which stream passes, latency should 
increase in correlation with victim signal.	





Measuring Correlation	



•  S(t) = Indicator variable. 	



•  1 if corrupt server is submitting, 0 
otherwise.	



•  L’(t) = normalized latency at time t 	



• Normalized by median latency	





Experimental evaluation	


•  Tested 13 Tor nodes (out of 50 available)	



•  11 of 13 cases: correctly identified case in which 
node was carrying victim traffic compared to 
stream flowing through other nodes	



•  Suggest increasing time of test to improve 
results.	



•  Also tested for FPs: no ‘echoes’ of stream at 
other nodes	





Good correlation	





No echoes	





Bad Correlation	





Results for 13 nodes	





Analysis of Attack	


• What is the actual reduction in security? 	



•  Is it doable?	



•  Are there countermeasures?	




