Wireless security (WEP)

EJ Jung
802.11b Overview

- Standard for wireless networks
 - Approved by IEEE in 1999
- Two modes: infrastructure and ad hoc

IBSS (ad hoc) mode
Independent Basic Service Set

BSS (infrastructure) mode
Basic Service Set
Service Set Identifier (SSID) differentiates one access point from another

- By default, access point broadcasts its SSID in plaintext “beacon frames” every few seconds

Default SSIDs are easily guessable

- Linksys defaults to “linksys”, Cisco to “tsunami”, etc.
- This gives away the fact that access point is active

Access point settings can be changed to prevent it from announcing its presence in beacon frames and from using an easily guessable SSID

- But then every user must know SSID in advance
Wired Equivalent Protocol (WEP)

- Special-purpose protocol for 802.11b
 - Intended to make wireless as secure as wired network
- Goals: confidentiality, integrity, authentication
- Assumes that a secret key is shared between the access point and clients
- Uses RC4 stream cipher seeded with 24-bit initialization vector and 40-bit key
 - Terrible design choice for wireless environment
 - In SSL, we will see how RC4 can be used properly
Summary of Attacks

- **None** of security goals are met
- “Insecurity of 802.11” [BGW’01]
 - Keystream reuse [confidentiality]
 - CRC attacks [integrity]
 - Authentication spoofing [access control]
 - IP redirection & TCP reaction attacks [confidentiality]
- “Inductive chosen plaintext attack” [Arb’01]
 - CRC attack [confidentiality]
- “Weaknesses in RC4 key scheduling” [FMS’01]
 - RC4 weakness [confidentiality]
Prior to communicating data, access point may require client to authenticate

Access Point
- beacon
- probe request

Client
- unauthenticated & unassociated
- authenticated & unassociated

Challenge: $\text{challenge} \oplus \text{RC4(IV,K)}$
- association request
- association response

Passive eavesdropper recovers RC4(IV,K), can respond to any challenge from then on without knowing K
How WEP Works

- **IV | shared key** used as RC4 seed
 - Must never be repeated (why?)
 - There is no key update protocol in 802.11b, so security relies on no collision on IV
 - Either change IV randomly or increment

CRC-32 checksum is linear in \oplus: if attacker flips some bit in plaintext, there is a known, plaintext-independent set of CRC bits that, if flipped, will produce the same checksum

IV sent in the clear
Worse: 802.11b says that changing IV with each packet is optional!

no integrity!
Why RC4 is a Bad Choice for WEP

- Stream ciphers require synchronization of key streams on both ends of connection
 - This is not suitable when packet losses are common
- WEP solution: a separate seed (IV) for each packet
 - Can decrypt a packet even if a previous packet was lost
- But number of possible seeds is not large enough!
 - RC4 seed = 24-bit initialization vector + fixed key
 - Assuming 1500-byte packets at 11 Mbps, 2^{24} possible IVs will be exhausted in about 5 hours
- Seed reuse is **deadly** for stream ciphers
Recovering Keystream

- Get access point to encrypt a known plaintext
 - Send spam, access point will encrypt and forward it
 - Get victim to send an email with known content

- If attacker knows plaintext, it is easy to recover keystream from ciphertext
 - \[C \oplus M = (M \oplus RC4(IV, key)) \oplus M = RC4(IV, key) \]
 - Not a problem if this keystream is not re-used

- Even if attacker doesn’t know plaintext, he can exploit regularities (plaintexts are not random)
 - For example, IP packet structure is very regular
Keystream **Will Be Re-Used**

- In WEP, repeated IV means repeated keystream
- Busy network will repeat IVs often
 - Many cards reset IV to 0 when re-booted, then increment by 1 ⇒ expect re-use of low-value IVs
 - If IVs are chosen randomly, expect repetition in $O(2^{12})$ due to birthday paradox (similar to hash collisions)
- Recover keystream for each IV, store in a table
 - $(\text{KnownM} \oplus \text{RC4(IV,key)}) \oplus \text{KnownM} = \text{RC4(IV,key)}$
 - Even if don’t know M, can exploit regularities
- Wait for IV to repeat, decrypt and enjoy plaintext
 - $(M’ \oplus \text{RC4(IV,key)}) \oplus \text{RC4(IV,key)} = M’$
It Gets Worse

- Misuse of RC4 in WEP is a design flaw with no fix
 - Longer keys do not help!
 - The problem is re-use of IVs, their size is fixed (24 bits)
 - Attacks are passive and very difficult to detect

- Perfect target for Fluhrer et al. attack on RC4
 - Attack requires known IVs of a special form
 - WEP sends IVs in plaintext
 - Generating IVs as counters or random numbers will produce enough “special” IVs in a matter of hours

- This results in key recovery (not just keystream)
 - Can decrypt even ciphertexts whose IV is unique
Fragmentation attack [Bittau, Handley, Lackey `06]

- WEP runs on top of 802.11x

- Fragmentation improves performance in noisy environment
 - 802.11b, 802.11g run on the same bandwidth with cordless phones, microwaves
Keystream retrieval

- Content of first 8 bytes is known in 802.11

```
0xAA 0xAA 0x03 0x00 0x00 0x08 ??
```

DSAP SSAP CTRL ORG code Ether type

Figure 2. LLC/SNAP header contained in practically all 802.11 data frames.

- The attacker can retrieve 8 bytes of keystream
 - cleartext ⊕ (cleartext ⊕ RC4(IV, key)) = RC4(IV,key)
Fragment and then encrypt

- 802.11 allows 16 fragmentation
 - the same keystream may be used for 16 times
- The attacker can inject any 64 bytes
 - $64 = 16$ fragments * (8–4 bytes CRC)

![Diagram of transmission and encryption process]

Figure 3. Transmitting a single logical packet in multiple 802.11 fragments.
Decrypt real-time

- Ask AP to forward to a known host
 - WEP only encrypts the packets between clients and AP
 - Attacker pre-pends the packet with the IP address of the known host
 - AP decrypts the packets and forwards the message in clear

- This attack works no matter what the key size is, no matter how often the key changes
Weak Countermeasures

- Run VPN on top of wireless
 - Treat wireless as you would an insecure wired network
 - VPNs have their own security and performance issues
 - Compromise of one client may compromise entire network

- Hide SSID of your access point
 - Still, raw packets will reveal SSID (it is not encrypted!)

- Have each access point maintain a list of network cards addresses that are allowed to connect to it
 - Infeasible for large networks
 - Attacker can sniff a packet from a legitimate card, then re-code (spoof) his card to use a legitimate address
References

- http://www.securityfocus.com/infocus/1814