
Introduction to Computer Science
II

CS112-2012S-10

Inheritance
David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles


10-0: Classes

Want to create a bunch of classes for a real estate
program

Apartment Building:
Square Footage
Number of floors
Number of units



10-1: Classes

Want to create a bunch of classes for a real estate
program

Private House
Square Footage
Number of floors
Number of bedrooms



10-2: Classes

Want to create a bunch of classes for a real estate
program

Office Building
Square Footage
Number of floors
Number of Elevators



10-3: Classes

Several data members (and methods) that are
shared across all building types:

Square footage
floors

We could duplicate these variables in all of our
classes (so that the House class and Office class
and Apartment class would all contain a definition
of an instance variable for Square Footage, for
example)

What are potential problems with this
approach?



10-4: Classes

It would be nice if we didn’t need have so much
repitition:

Class that describes a building
Contains Square footage, number of floors, etc
(Features common to all buildings)

Class that describes an apartment building
Autmatically has everything in a generic
building
Extra instance variables / methods that are
particular to apartments



10-5: Inheritace

Add “extends <classname>” to class defition
class Apartment extends Building { ... }

Defines an “is-a” relationship
Apartment is a building

Defines a superclass/subclass relationship
Building is the superclass
Aparment is the subclass



10-6: Inheritace

Add “extends <classname>” to class defition
class Apartment extends Building { ... }

Subclass inherits all of the methods / data from the
superclass.

Examples from code



10-7: Adding Constructors

Superclasses and subclasses can have
constructors

Subclass can call the constructor of the superclass
with the “super” keyword

We’ll find more uses for the super keyword later

If you call the constructor of a subclass from a
superclass, you need to do it first

Show examples
How would you do the same thing without using
“super”?



10-8: Super & Constructors

If you do not call the constructor of the superclass
explicitly, then the default (no parameter) version of
the constructor is called automatically at the
beginning of the constructor

Each class takes care of itself
Don’t need to worry (too much) about the inner
workings of a superclass when writing a
subclass
Just concentrate on the new stuff

(examples)



10-9: Access control

public: Anyone use it

protected: Only subclasses can use it

private: No one but the original class can use it.

Examples



10-10: Overriding Methods

class SuperClass {

void print() {

System.out.println("Message from SuperClass");

}

}

class SubClass extends SuperClass {

void print() {

System.out.println("Message from SubClass");

}

}

SuperClass sup = new SuperClass();

SubClass sub = new SubClass();

sup.print();

sub.print();



10-11: Using Super

class SuperClass {

void print() {

System.out.println("Message from SuperClass");

}

}

class SubClass extends SuperClass {

void print() {

System.out.println("Message from SubClass");

super.print();

}

}



10-12: Get your Fingers Dirty

Define a Class Vehicle, which has the protected integer instance variable numWheels.
Also, add public accessor (get/set) methods for numWheels, and a constructor that
takes as an input parameter the number of wheels.

Define a Class Bicycle, subclass of Vehicle, which has the protected integer instance
variable gears. Add public accessor (get/set) methods for gears, and a constructor
that takes as an input parameter the number of gears. The constructor should set the
number of wheels to 2 (by calling super)

Define a Class Car, subclass of Vehicle, which has the protected double instance
variable horsepower. Add public accessor (get/set) methods for horsepower, and a
constructor which takes as an input parameter the horswpower, and set the number of
wheels to 4 (by calling super)

Define a Class Truck, subclass of Car, which has the protected double instance
variable payloadVolume. Add public accessor for payloadVolume, and a constructor
that takes 2 parameters, horsepower and payload volume.

Create a main program that instantiates one of each class, and then uses set methods to make

the truck a 3 wheeled, 0.5 horsepower truck with a payload volume of 0.1.


	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inheritaceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inheritaceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Constructorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Super & Constructorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Access controladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overriding Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Using Superaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Get your Fingers Dirtyaddtocounter {blocknumber}{1}

