
CS112-2012S-10 Inheritance 1

10-0: Classes

• Want to create a bunch of classes for a real estate program

• Apartment Building:

• Square Footage
• Number of floors

• Number of units

10-1: Classes

• Want to create a bunch of classes for a real estate program

• Private House

• Square Footage
• Number of floors

• Number of bedrooms

10-2: Classes

• Want to create a bunch of classes for a real estate program

• Office Building

• Square Footage
• Number of floors

• Number of Elevators

10-3: Classes

• Several data members (and methods) that are shared across all building types:

• Square footage

• floors

• We could duplicate these variables in all of our classes (so that the House class and Office class and Apartment
class would all contain a definition of an instance variable for Square Footage, for example)

• What are potential problems with this approach?

10-4: Classes
It would be nice if we didn’t need have so much repitition:

• Class that describes a building

• Contains Square footage, number of floors, etc

• (Features common to all buildings)

• Class that describes an apartment building

• Autmatically has everything in a generic building

• Extra instance variables / methods that are particular to apartments

10-5: Inheritace



CS112-2012S-10 Inheritance 2

• Add “extends ¡classname¿” to class defition

• class Apartment extends Building{ ... }

• Defines an “is-a” relationship

• Apartment is a building

• Defines a superclass/subclass relationship

• Building is the superclass

• Aparment is the subclass

10-6: Inheritace

• Add “extends ¡classname¿” to class defition

• class Apartment extends Building{ ... }

• Subclass inherits all of the methods / data from the superclass.

• Examples from code

10-7: Adding Constructors

• Superclasses and subclasses can have constructors

• Subclass can call the constructor of the superclass with the“super” keyword

• We’ll find more uses for the super keyword later

• If you call the constructor of a subclass from a superclass, you need to do it first

• Show examples

• How would you do the same thing without using “super”?

10-8: Super & Constructors

• If you do not call the constructor of the superclass explicitly, then the default (no parameter) version of the
constructor is called automatically at the beginning of theconstructor

• Each class takes care of itself

• Don’t need to worry (too much) about the inner workings of a superclass when writing a subclass

• Just concentrate on the new stuff

(examples)
10-9: Access control

• public: Anyone use it

• protected: Only subclasses can use it

• private: No one but the original class can use it.

Examples
10-10: Overriding Methods



CS112-2012S-10 Inheritance 3

class SuperClass {
void print() {

System.out.println("Message from SuperClass");
}

}

class SubClass extends SuperClass {
void print() {

System.out.println("Message from SubClass");
}

}

SuperClass sup = new SuperClass();
SubClass sub = new SubClass();

sup.print();
sub.print();

10-11: Using Super

class SuperClass {
void print() {

System.out.println("Message from SuperClass");
}

}

class SubClass extends SuperClass {
void print() {

System.out.println("Message from SubClass");
super.print();

}
}

10-12: Get your Fingers Dirty

• Define a Class Vehicle, which has the protected integer instance variable numWheels. Also, add public accessor (get/set) methods for numWheels, and a constructor that takes as an input parameter the number of wheels.

• Define a Class Bicycle, subclass of Vehicle, which has the protected integer instance variable gears. Add public accessor (get/set) methods for gears, and a constructor that takes as an input parameter the number of gears.
The constructor should set the number of wheels to 2 (by calling super)

• Define a Class Car, subclass of Vehicle, which has the protected double instance variable horsepower. Add public accessor (get/set) methods for horsepower, and a constructor whichtakes as an input parameter the
horswpower, and set the number of wheels to 4 (by calling super)

• Define a Class Truck, subclass of Car, which has the protecteddouble instance variable payloadVolume. Add public accessor for payloadVolume, and a constructor that takes 2 parameters, horsepower and payload volume.

Create a main program that instantiates one of each class, and then uses set methods to make the truck a 3 wheeled, 0.5 horsepower truck with a payload volume of 0.1.


