Intro to Computer Science I
CS112-2012S-02

Creating Classes

David Galles

Department of Computer Science
University of San Francisco


http://www.cs.usfca.edu/galles

02-0: Java Programs

® Java programs are a collection of classes
e Each class is a Template, not an Object
e Can't use a class until we create an instance
(call “new”)
® One exception: Static Methods

® |n this course, we will only use one static method:
main method



02-1: Java Programs

® Simpliest Java Program:.
* Hello World 3 ways



02-2: Classes

® Classes contain data and methods (like functions
In python)

® Methods can access data members (called
Instance variables) of a class

® Special method, called “Constructor”, which is
called when an object of the class is created using
new.



02-3: Classes

® Second Example: Employee



02-4: Implementation |: Locals

® \/ariables declared inside functions are called local
variables

® Stored on the Call Stack
® Created when function is called
® Dissappear when function ends



02-5: Implementation |: locals

® \When a method is called:

* Allocate space on the call stack to store method
parameters & variables local to the method
- Activation record for the method

* Copy values into the space allocated for the
parameters

e Execute the body of the method
* Pop activation record off the stack



02-6: Implementation I. locals

® Example: MethodTest
e Code
e Memory contents (on whiteboard)



02-7. Pass-By-Value

® Methods in Java are “Pass-By-Value”
® Value Is copied into the parameter

® Changes to the parameter don’t change the value
passed int

® Example: MethodTest2



02-8: Objects

® Stack Is not the only place where data is stored
® Objects (specifically, instance variables) are stored
on the Heap
e Different section of memory than the stack

e Memory Is allocated (or set aside) on the heap
through a call to new



02-9: Objects

® HeapData, HeapDriverl



02-10. Objects

® Every object in your program is a pointer to
memory on the heap

® \When we pass an object as a parameter, copy the
pointer

® Changes to the pointer itsef are not reflected back
to the calling method

® Changes made to what the pointer points to are
reflected back to the calling method



02-11: Objects

® HeapData, HeapDriver2, MethodTest3



	{small lecturenumber -	heblocknumber :} Java Programsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java Programsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementation I: Localsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementation I: localsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementation I: localsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pass-By-Valueaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Objectsaddtocounter {blocknumber}{1}

