
CS112-2012S-23 Abstract Classes and Interfaces 1

23-0: Drawing Example

• Creating a drawing program

• Allow user to draw triangles, circles, rectanlges, move them around, etc.

• Need to store a list of shapes, each of which could be a circle,rectangle, or triangle

• Shape superclass, with Triangle, Rectangle, and Circle subclasses

23-1: Shape Class

class Shape
{

public void draw() in main
{ ---------

Shape shapes[] = new Shape[3];
} shapes[0] = new Circle();

} shapes[1] = new Rectangle();
class Rectangle extends Shape shapes[2] = new Circle();
{

public void draw()
{

// code to draw a Rectangle for (int i = 0; i < shapes.length; i++)
} {

} shapes[i].draw();
class Circle extends Shape }
{

public void draw()
{

// code to draw a Circle
}

}

23-2: Abstract Classes

• Abstract Class:

• How do you draw a generic shape?

• Drawing a generic shape doesn’t make sense!

• Does it ever make sense to instantiate a generic Shape (instead of a circle, triangle, or rectange)?

• No!

• We can make the Shape classabstract

• Prevents anyone from creating an instance of Shape

• Shapevariables are OK, as long as values are Circles, Triangles, etc

23-3: Abstract Classes

abstract class Shape In main
{ -------

public abstract void draw(); Shape s1, s2, s3; // OK!
}
class Circle extends Shape s1 = new Shape(); // NOT OK!
{ s2 = new Circle(); // OK!
// Needs to implement draw s3 = new Triangle(); // OK!

}
class Triangle extends Shape s2.draw(); // OK!
{ s3.draw(); // OK!
// Needs to implement draw

}
class Rectangle extends Shape
{
// Needs to implement draw

}

23-4: Abstract Classes

• We can make a class abstract by adding the abstract modifier tothe class definition

• Can’t create instances of an abstract class

• If a class is abstract, we can define abstract methods



CS112-2012S-23 Abstract Classes and Interfaces 2

• Use the abstract modifier on method definition

• Don’t give the method a body (use a ; instead of a method body)

• Subclasses of this class will need to either implement all abstract methods, or be abstract themselves

23-5: Inheritance Heirarchies

• More than one way to skin a cat

• Classes for animals:

• Standard classification: Mammal, bird, reptile

• Functional Classification: Flying Animal, Swimming animalWalking Animal

• How you design your classes depends upon the problem at hand

23-6: Inheritance Heirarchies
Animal

Mammal Bird Reptile

Bat Seal Ostrich Finch Water Snake

Animal

Flyer Walker Swimmer

Bat SealOstrichFinch Water Snake

23-7: Multiple Inheritance?

• Might be nice to inheret from more than one thing

• Bat is a mammaland a flying animal

• Could inherit both mammalian qualities, and qualities of flying animals

• Likely want to override methods specific to bats, but would benice to get as much “for free” as
possible

• Javadoes not allow multiple inheritance

• C++ does, however

23-8: Multiple Inheritance?

• Multiple inheritance does have problems

• Class A defines a method foo

• Class B also defines a method foo

• Class C inherits from both A and B (multiple inheritance)



CS112-2012S-23 Abstract Classes and Interfaces 3

• Which foo does class C use?

• Java avoids these problems by only allowing single inheritance

23-9: Interfaces

• Multiple inheritance can be useful

• Allows more than one heirarchy structure

• Arrange our animal classes both structurally (mammal, reptile, etc) and functionally (swims, flies, runs,
etc)

• We can get some of the advantages of multiple inheritance from interfaces

23-10: Interfaces

• A java interface is essentially a promise

• Interface defines a number of methods

• Classes that implement the interface promise to implement all of those methods

23-11: Interfaces

public interface Flyer
{

public void fly();
}

• Any class that implements Flyer needs to implement the fly method

23-12: Interfaces

public interface Flyer
{

public void fly();
}

public class Bat extends Mammal implements Flyer
{

public void fly()
{

System.out.println("I’m flying");
}

}

23-13: Interfaces

public interface Comparable
{

public int compareTo(Object o);
}

• Any class that implements Comparable needs to implement thecompareTo method

• (Note – recent versions of Java use Generics in Comparable interface, but the basic idea is the same

23-14: Interfaces

class Student implements Comparable
{

public int studentID;
public String name;

public int compareTo(Object other)
{

// How can we compare an Object to a Student?
// Really only want to compare students to other students!

// Need a way to check if "other" is really a student
// If it is a student, we need to get at "student"
// instance variables (studentID, name)

}
}



CS112-2012S-23 Abstract Classes and Interfaces 4

23-15: Casting

• (<Type>) f

• If f is not of type<Type>, runtime error

• If f is of type <Type>, we can assign to a variable of type<Type>

Object o1 = new String("Hello!");
Object o2 = new Integer(3);

String s;
Integer i;
i = o1; // Not legal! Won’t even compile
i = o2; // Not legal! Won’t even compile
s = o1; // Not legal! Won’t even compile
s = o2; // Not legal! Won’t even compile

23-16: Casting

• (<Type>) f

• If f is not of type<Type>, runtime error

• If f is of type <Type>, we can assign to a variable of type<Type>

Object o1 = new String("Hello!");
Object o2 = new Integer(3);

String s;
Integer i;
i = (Integer) o1; // Compiles, gives runtime error
i = (Integer) o2; // Compiles & runs OK
s = (String) o1; // Compiles & runs OK
s = (String) o2; // Compiles, gives runtime error

23-17: Casting

• Of course, we can always assign a subclass value to a superclass variable, without casting.

• Never gives us a runtime error

• If we assign a subclass value to a superclass variable, we canget the subclass value out of the variable by casting

• Will give us a runtime error if the superclass variable does not hold a subclass value

23-18: Interfaces

class Student implements Comparable
{

public int studentID;
public String name;

public int compareTo(Object other)
{

// Following will cause runtime exception if we try to
// compare a Student with a non-student.
int otherID = ((Student) other).studentID;
if (studentID < otherID)

return -1;
else if (studentID > otherID)

return 1;
else

return 0;
}

}

23-19: Using Interfaces

• We can declare a variable of type “Comparable”

• Can assign any comparable value to type Comparable



CS112-2012S-23 Abstract Classes and Interfaces 5

Comparable c1, c2, c3;
c1 = new Student();
c2 = Integer(4); // Integer class implements Comparable
c3 = "Hello"; // String class does, too

23-20: Using Interfaces

• Creating a comparable variable seems a little silly

• However, write a function that takes a Comparable variable as a parameter makes perfect sense

• Even better, a function that takes an array of Comparable objects as an input parameter

23-21: Using Interfaces

• Write a method that takes as input an array of “Comparable”

• That is, we can pass in an array of anything, as long as elements of that array implement Comparable

• Returns the smallest element in the array

23-22: Using Interfaces

Comparable minValue(Comparable array[])
{
}

• Return the smallest element in the array

• If the array is empty, return null

23-23: Using Interfaces

Comparable minValue(Comparable array[])
{

if (array.length == 0)
return null;

Comparable smallest = array[0];
for (int i = 1; i < array.length; i++)
{

if (array[i].comparTo(smallest) < 0)
smallest = array[i];

}
return smallest;

}

23-24: Using Interfaces

Integer intArray[] = new Integer[10];
// fill up intArray with Integers

Student studentArray[] = new Student[20];
// fill up student array with Students

Integer smallestInteger = smallest(intArray); // BAD!! Why?
Student smallestStudent = smallest(studentArray); // BAD!! Why?

23-25: Using Interfaces

Integer intArray = new Integer[10];
// fill up intArray with Integers

Student studentArray = new Student[20];
// fill up student array with Students

Integer smallestInteger = (Integer) smallest(intArray);
Student smallestStudent = (Student) smallest(studentArray);

23-26: Sorting

• Want to sort an array if integers



CS112-2012S-23 Abstract Classes and Interfaces 6

• Break the list into a sorted portion and an unsorted portion

• Repeatedly insert the next element in the unsorted portion of the list into the sorted portion of the list
(exmaples on board)

23-27: Sorting

public static void sort(Comparable data[])
{

for (int i = 1; i < data.length; i++)
{

Comparable nextElem = data[i];
int j;
for (j=i-1; j >= 0 && data[j].compareTo(nextElem) > 0; j--)
{
data[j+1] = data[j];

}
data[j+1] = nextElem;

}
}

23-28: Sorting

• This sorting method can sort any array of comparables

• Integers

• Strings

• Students

• ... anything that implements the comparable interface

23-29: MiniLab

• Create an interface Audible that contains the method speak,that takes no parameters and retuns no value

• Create two classes Dog and Cat that both implement the Audible interface

• Dog speak method prints out “woof”

• Cat speak method prints out “meow”

• In a separate driver class, create an array of Audibles, fill it with Dogs and Cats, and then have each element in
the array speak.


