
Introduction to Computer Science
II

CS112-2012S-24

Final Review I
David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles


24-0: Review

Memory Basics (stack vs. heap)

Creating Objects

Control Structures (if, while, etc)

Mutable and Immutable objects (Strings!)

Methods (including recursion)

Arrays

Static fun

For Wednesday:
Linked Lists
Inheritance (including polymorphism)
Potpourri (Exceptions, etc)



24-1: Memory Basics

Parameters and local variables are all stored on
the stack

Instance variables in classes are stored on the
heap

Pointers to classes can be stored on the stack

Primative types (int/boolean/double/etc –
non-classes) are stored on the stack unless they
are instance variables within a class

Heap memory is only created if you call “new”



24-2: Memory Basics

public class Foo

{

int x;

int y;

}

public static void main(String args[])

{

int x;

int y;

Foo f1, f2;

// What does the stack / heap look like?

f1 = new Foo();

f2 = new Foo();

// What about now?

}



24-3: Memory Basics

public class Foo public class Bar

{ {

int x; Foo f1;

int y; Foo f2;

} }

public static void main(String args[])

{

int x;

int y;

Bar b;

// What does the stack / heap look like?

b = new Bar();

// Now What does the stack / heap look like?

b.f1 = new Foo();

// What about now?

b.f2 = new Foo();

// What about now?

}



24-4: Memory Basics

public class Bar public class Foo

{ {

public Foo f1; int x;

public Foo f2; int y;

public Bar() }

{

f1 = new Foo();

f2 = new Foo();

}

}

public static void main(String args[])

{

int x,y;

Foo f;

bar b;

// What does the stack / heap look like?

b = new Bar();

// Now What does the stack / heap look like?

f = new Foo();

}



24-5: Memory Basics

Classes are Templates

Need to call “new” to create instance of classes

Can only get memory on heap by calling new



24-6: Java Control Structures

If:

if (<test>)
<statement>

or
if (<test>)

<statement1>
else

<statement2>

A statement is either a single statment (terminated
with ;), or a block of statements inside { }



24-7: If test

What can we have as the test of an if statement?
Boolean valued expression



24-8: If test

What can we have as the test of an if statement?
boolean variable
function that returns a boolean value
comparison x < y or x != 0

Combination of boolean expressions, using not
(!), and (&&), or (||)



24-9: Boolean Variables

Hold the value true or false

Can be used in test (if, while, etc)

boolean b;
boolean c;
b = true;
c = b || false;
b = (3 < 10) && (5 > 11);
c = !b && c;



24-10: if Gotchas

What is (likely) wrong with the following code?

if (x != 0)
z = a / x;
y = b / x;



24-11: if Gotchas

What is (likely) wrong with the following code?

if (x != 0)
{

z = a / x;
y = b / x;

}

Moral: Always use {} in if statements, even if they
are not necessary



24-12: while loops

while(test)
{

<loop body>
}

Evaluate the test

If the test is true, execute the body of the loop

Repeat

Loop body may be executed 0 times



24-13: do-while loops

do
{

<loop body>
} while (<test>);

Execute the body of the loop

If the test is true, repeat

Loop body is always executed at least once



24-14: while vs. do-while

What would happen if:
Found a while loop in a piece of code
Changed to to a do-while (leaving body of loop
and test the same)

How would the execution be different?



24-15: while vs. do-while

What would happen if:
Found a while loop in a piece of code
Changed to to a do-while (leaving body of loop
and test the same)

How would the execution be different?
If the while loop were to execute 0 times,
do-while will execute (at least!) one time
If the while loop were to execute 1 or more
times, should to the same thing ...

... except if the test had side effects



24-16: Side Effects
class BoolFun

{

private int size;

boolean calledTooMuch()

{

return (++size > 4)

}

}

// in main:

BoolFun bf = new BoolFun();

while (!bf.calledTooMuch())

{

System.out.print("x");

}



24-17: Side Effects
class BoolFun

{

private int size;

boolean calledTooMuch()

{

return (++size > 4)

}

}

// in main:

BoolFun bf = new BoolFun();

do

{

System.out.print("x");

} while (!bf.calledTooMuch());



24-18: for loops

for (<init>; <test>; <inc>)
{

<body>
}

Equivalent to:

<init>
while(<test>)
{

<body>
<inc>

}



24-19: for loops

for (number = 1; number < 10; number++)
{

System.out.print("Number is " + number);
}

Equivalent to:

number = 1;
while(number < 10)
{

System.out.print("Number is " + number);
number++;

}



24-20: Strings

Strings in Java are objects

Contain both methods and data
Data is the sequence of characters (type char)
that make up the string
Strings have a whole bunch of methods for
string processing



24-21: Strings

Strings in Java are objects
Strings are stored on the heap, like all other
objects
Data is stored as an array of characters
Strings are immutable (once created, can’t be
changed)



24-22: String Literals

String s;
s = "Dog";

"Dog" is called a String Literal
Anything in quotation marks is a string literal
System.out.println("Hello There")



24-23: String Literals

Any time there is a string literal in your code, there
is an implicit call to “new”

A new string object is created on the heap
Data is filled in to match the characters in the
string literal
Pointer to that object is returned

String s;
s = "MyString"; // Implicit call to new here!



24-24: Stack vs. Heap I

public void foo()
{

int x = 99;
char y = ’c’;
String z = "c";
String r = "cat";
float w = 3.14;

}



24-25: Immutable Strings

Strings are immutable

Once you create a string, you can’t change it.

String s = "Car"; // Create a block of memory containing ’car’

// Return a pointer to this block of memory

unknown.foo(s); // This function can’t mess with contents of s

System.out.println(S); // s is guaranteed to be "Car" here



24-26: Immutable Strings

String objects are immutable
Once a string object is created, it can’t be
changed

String variables can be changed
Create a new String object, assign it to the
variable

String s = "dog";
s = "cat";



24-27: “Mutable” Objects

public class ICanChange

{

private int x;

public ICanChange(int initialX)

{

this.x = initialX;

}

public int getX()

{

return this.x;

}

publc void setX(int newX)

{

this.x = newX;

}

}



24-28: “Mutable” Objects

ICanChange c = new ICanChange(4);
c.setX(11); // Changed the value in object

// c points to
System.out.println(c.getX());

Created an object of type ICanChange

Changed the data within that object



24-29: “Mutable” Objects

ICanChange c = new ICanChange(4);
c = new ICanChange(11);
System.out.println(c.getX());

Created an object of type ICanChange, with value
4

Created a new object of type ICanChange, with
value 11

Throw away the old object



24-30: “Mutable” Objects

ICanChange c = new ICanChange(4);

StrangeClass s = new StrangeClass(); // Don’t know what this does ...

s.foo(c);

System.out.println(c.getX());



24-31: “Mutable” Objects

public class StrangeClass

{

void foo(ICanChange a)

{

a.setX(99);

}

}



24-32: “Immutable” Object

public class ICantChange

{

private int x;

public ICanChange(int initialX)

{

this.x = initialX;

}

public int getX()

{

return this.x;

}

}



24-33: “Immutable” Object

ICantChange c = new ICantChange(13);
System.out.println(c.getX());
c = new ICantChange(37);
System.out.println(c.getX());

Create a new object, have c point to this new object

Old object didn’t change, but the value of c did ....



24-34: “Immutable” Object

ICantChange c = new ICantChange(13);
Strange s = new Strange();

s.foo(c);
System.out.println(c.getX());

Do we know anything about what the println will
ouput?



24-35: “Immutable” Objects

public class Strange

{

void foo(ICantChange icc)

{

// We can’t change the value of x stored in icc

// directly (private, no setters)

//

// Best we can do is change what icc points to ...

icc = new ICantChange(99);

// icc.getX() would return 99 here, but what about

// the calling function?

}

}



24-36: Methods

Classes can contain both data and methods

When a method is called:
Calculate values of all method parameters
(including implicit this parameter)
Copy values of parameters into activation
record of new method
Execute method, using activation record for
local variables
When method is completed, pop activation
record off the stack



24-37: Methods
class MyClass public static void main(String args[])

{ {

public int x; int x;

public int y; MyClass c = new MyClass();

x = 3;

int foo(int w) c.x = 4;

{ c.y = 5;

int q; x = c.foo(x);

q = x + w; System.out.println(x);

return q+y; }

}

}



24-38: Methods
class MyClass public static void main(String args[])

{ {

public int x; int x;

public int y; MyClass c = new MyClass();

x = 3;

int foo(int w) c.x = 4;

{ c.y = 5;

int q; x = c.bar(x);

q = x + w; System.out.println(x);

return q+y; }

}

int bar(int p)

{

return foo(x) + foo(p);

}

}



24-39: Collections of Data

We want to bundle a bunch of values together
Want to represent several different values using
a single variable

We can:
Create a class with several instance variables
Create an array



24-40: Arrays

Arrays are objects

Access elements using [] notation

Need to declare the size of the array when it is
created

Can’t change the size of an array once it is created

Get the length of the array using public length
instance variable



24-41: Arrays

Two ways to declare arrays:

<typename>[] variableName;
<typename> variableName[];

Examples:

int A[]; // A is an array of integers
int[] B; // B is an array if integers
String C[]; // C is an array of strings



24-42: Arrays: New

Like all other objects, Arrays are stored on the
heap

int A[] just allocates space for a pointer

Need to call new to create the actual array

new <type>[<size>]



24-43: Arrays: New

Show contents of memory after each line:

int A[];
int B[];
A = new int[10];
B = new int[5];
A[7] = 4;
B[2] = 5;
B[5] = 13; /// RUNTIME ERROR!



24-44: Arrays: Copying

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
A = B;

What do you think this code does?

What happens when we assign any object to
another object?



24-45: Arrays: Copying

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
A = B;

How could we copy the data from B into A

(A and B should point to different memory
locations, have same values



24-46: Arrays: Copying

int A[] = new int[SIZE];
int B[] = new int[SIZE];

// Code to store data in B
for (int i = 0; i < B.length; i++)
{

A[i] = B[i];
}



24-47: Array: Copying

int A[] = new int[5];
int B[] = new int[5];
int C[];

for (int i = 0; i < 5; i++)
A[i] = i;

for (int i = 0; i < 5; i++)
B[i] = A[i];

C = A;

B[2] = 10;
C[2] = 15;



24-48: Arrays of Objects

We can have arrays of objects, as well as arrays of
integers

...
Point pointArray[] = new Point[10];
pointArray[3].setX(3);

What happens?
(refer to Java documentation for Point objects)



24-49: Arrays of Objects

Point pointArray[] = new Point[10];

for (int i = 0; i < 10; i++)
{

pointArray[i] = new Point(i, i);
}

How would you calculate the average x value of all
elements in the array?



24-50: Arrays of Objects

How would you calculate the average x value of all
elements in the array?

Point pointArray[] = new Point[10];

// Fill in pointArray

//

double sum = 0.0;

for (int i = 0; i < pointArray.length; i++)

{

sum = sum + pointArray[i].getX();

}

sum = sum / pointArray.length;



24-51: 2D Arrays

We can create 2D arrays as well as 1D arrays
Like matrices

2D array is really just an array of arrays



24-52: 2D Arrays

int x[][]; // Declare a 2D array
int[][] y; // Alternate way to declare 2D array

x = new int[5][10]; // Create 50 spaces
y = new int[4][4]; // create 16 spaces



24-53: 2D Arrays

int x[][]; // Declare a 2D array
x = new int[5][5]; // Create 25 spaces

x[2][3] = 11;
x[3][3] = 2;
x[4][5] = 7; // ERROR! Index out of bounds



24-54: 2D Arrays

How would we create a 9x9 array, and set every
value in it to be 3?



24-55: 2D Arrays

How would we create a 9x9 array, and set every
value in it to be 3?

int board[][];
board = new int[9][9];
for (int i = 0; i < 9; i++)

for int (j = 0; j < 9; j++)
board[i][j] = 3;



24-56: Using Arrays

Need to declare array size before using them

Don’t always know ahead of time how big our array
needs to be

Allocate more space than we need at first

Maintain a second size variable, that has the
number of elements in the array we actually care
about

Classes that use arrays often will have an array
instance variable, and a size instance variable
(how much of the array is used)



24-57: Arrays

On board: What memory looks like for the
following:

public static void main(String args)
{

int A[];
int x;
String B[]; <-- Show memory here
A = new int[5];
B = new String[3];

<-- Show memory here
}



24-58: Recursion

The way function calls work give us a fantastic tool
for solving problems

Make the problem slightly smaller
Solve the smaller probelm using the very
function that we are writing
Use the solution to the smaller problem to solve
the original problem



24-59: Recursion

What is a really easy (small!) version of the
problem, that I could solve immediately? (Base
case)

How can I make the problem smaller?

Assuming that I could magically solve the smaller
problem, how could I use that solution to solve the
original problem (Recursive Case)



24-60: Recursion

Example: Factorial
n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

5! = 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120

8! = 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 40320

What is the base case? That is, a small, easy
version of the problem that we can solve
immediately?



24-61: Recursion – Factorial

Example: Factorial
n! = n ∗ (n − 1) ∗ (n − 2) ∗ ... ∗ 3 ∗ 2 ∗ 1

What is a small, easy version of the problem that
we can solve immediately?

1! == 1.



24-62: Recursion – Factorial

How do we make the problem smaller?
What’s a smaller problem than n! ?
(only a liitle bit smaller)



24-63: Recursion – Factorial

How do we make the problem smaller?
What’s a smaller problem than n! ?
(n − 1)!

If we could solve (n − 1)!, how could we use this to
solve n! ?



24-64: Recursion – Factorial

How do we make the problem smaller?
What’s a smaller problem than n! ?
(n − 1)!

If we could solve (n − 1)!, how could we use this to
solve n! ?

n! = (n − 1)! ∗ n



24-65: Recursion – Factorial
int factorial(int n)

{

if (n == 1)

{

return 1;

}

else

{

return n * factorial(n - 1);

}

}



24-66: Recursion – Factorial

0! is defined to be 1

We can modify factorial to handle this case
easily



24-67: Recursion – Factorial

0! is defined to be 1

We can modify factorial to handle this case
easily

int factorial(int n)

{

if (n == 0)

{

return 1;

}

else

{

return n * factorial(n - 1);

}

}



24-68: Recursion

To solve a recursive problem:
Base Case:

Version of the problem that can be solved
immediately

Recursive Case
Make the problem smaller
Call the function recursively to solve the
smaller problem
Use solution to the smaller problem to solve
the larger problem



24-69: Recursion – Tips

When writing a recursive function
Don’t think about how the recursive function
works all the way down
Instead, assume that the function just works for
a smaller problem

Recursive Leap of Faith
Use the solution to the smaller problem to solve
the larger problem



24-70: Recursion – NumDigits

Write a method that returns the number of base-k
digits in a number n
int numDigits(int n, int k)

numDigits(20201, 10) == 5

numDigits(34, 10) == 2

numDigits(3050060,7) == 7

numDigits(137, 2) == 8

What is the base case?

How can we make the problem smaller?

How can we use the solution to the smaller
problem to solve the original problem?



24-71: Recursion – NumDigits

int numDigits(int n, k)

{

if (n < k)

{

return 1;

}

else

{

return 1 + numDigits(n / k);

}

}



24-72: Recursion Problems

Write a recursive function that returns the smallest
value in the first size elements of an array of
integers

int minimum(int A[], int size)



24-73: Recursion Problems
int minimum(int A[], int size)

{

if (size == 0)

return null;

if (size == 1)

return A[0];

int smallest = minimum(A, size - 1);

if (smallest < A[size - 1])

return smallest;

else

return A[size - 1];

}



24-74: Static

Normally, can only call methods on classes when
we created an instance of the class

Methods can rely on instance variables to work
properly
Need to create an instance of a class before
there are any instance variables
What would the size() method return for an
ArrayList if there was not an instance to check
the size of?



24-75: Static

Some methods don’t operate on an instance of the
class – pure functions that don’t use instance
variables at all

Math functions like min, or pow
parseInt – takes a string as an input parameter,
and returns the integer value of the string
parseInt("123") returns 123

Seems silly to have to instantiate an object to use
these methods

static to the rescue!



24-76: Static

If we declare a method as static, it does not rely on
an instance of the class

Can call the method without creating an instance
first

Use the Class Name to invoke (call) the method

double x = Math.min(3.4, 6.2);
double z = Math.sqrt(x);



24-77: Consants

Having 3.14159 appearing all over your code is
considered bad style

Could end up using different values for pi in
different places (3.14159 vs. 3.1415926)
If you want to change the value of pi (to add
more digits, for instance), need to search
through all of your code to find it

In general, any time you have a “magic number”
(that is, an arbitrary numeric literal) in your code, it
should probably be a symbolic constant instead.

The “final” modifier is used to prevent you from
changing the value of a variable



24-78: Consants

class Calendar
{

final int MONTHS_IN_YEAR = 12;
final int DAYS_IN_WEEK = 12;
final int DAYS_IN_YEAR = 365;

// Methods that use the above constants
}

Every instance of class Calendar will contain those
3 variables

Somewhat wasteful

Need to instantiate an object of type Calendar to
access them



24-79: Consants: Static

We can declare variables to be static as well as
methods

Typically used for constants (Math.pi, Math.e)

Access them using class name, not instance name
(just like static methods)

You should only use static variables for constants
public static final float pi = 3.14159;



24-80: Globals: Static

It is technically possible to have a variable that is
public and static, but not final

Can be accesed anywhere
Can be changed anywhere

While the compiler will allow it, this is (usually!) a
very bad idea. Why?


	{small lecturenumber -	heblocknumber :} Reviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Memory Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Memory Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Memory Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Memory Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Memory Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java Control Structuresaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} If testaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} If testaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Boolean Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} if Gotchasaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} if Gotchasaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} while loopsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} do-while loopsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} while vs. do-whileaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} while vs. do-whileaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Side Effectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Side Effectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} for loopsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} for loopsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Literalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Literalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack vs. Heap Iaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Immutable Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Immutable Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Collections of Dataaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays: Newaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays: Newaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays: Copyingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays: Copyingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays: Copyingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array: Copyingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays of Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays of Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arrays of Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2D Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2D Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2D Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2D Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2D Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Using Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Factorialaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- Tipsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- NumDigitsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion -- NumDigitsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursion Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Staticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Staticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Staticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Consantsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Consantsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Consants: Staticaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Globals: Staticaddtocounter {blocknumber}{1}

