CS112-2012S-24 Final Review | 1

24-0: Review
e Memory Basics (stack vs. heap)
e Creating Objects
e Control Structures (if, while, etc)
e Mutable and Immutable objects (Strings!)
e Methods (including recursion)
e Arrays
e Static fun
e For Wednesday:

e Linked Lists
e Inheritance (including polymorphism)
e Potpourri (Exceptions, etc)

24-1: Memory Basics

e Parameters and local variables are all stored on the stack
e Instance variables in classes are stored on the heap
e Pointersto classes can be stored on the stack

e Primative types (int/boolean/double/etc — non-classestmred on the staalnless they areinstance variables
within a class

e Heap memory is only created if you call “new”

24-2: Memory Basics

public class Foo

int x
inty;
}

public static void main(String args[])

int x;
int y;
Foo f1, f2;
11 What does the stack / heap | ook |ike?
f1 = new Foo();
f2 = new Foo();
I What about now?
}

24-3: Memory Basics

public class Foo public class Bar
int x; Foo f1;
inty; Foo f2;

} }

public static void main(String args[])
int x
int y;
Bar b;

11 What does the stack / heap | ook |ike?

b = new Bar();

11 Now What does the stack / heap | ook |ike?
b.f1 = new Foo();

1 What about now?

b.f2 = new Foo();

I What about now?

CS112-2012S-24 Final Review |

24-4: Memory Basics

public class Bar public class Foo
public Foo f1; int x;
public Foo f2; int y;
public Bar() }
{

f1 = new Foo();
f2 = new Foo();

}
public static void main(String args[])

int x,y;

Foo f;

bar b;

11 What does the stack / heap | ook |ike?

b = new Bar();

11 Now What does the stack / heap | ook |ike?
f = new Foo();

}
24-5: Memory Basics
e Classes ar@emplates

e Need to call “new” to create instance of classes

e Can only get memory on heap by calling new

24-6: Java Control Structures
o If:

if (<test>)
<st at enent >

or
if (<test>)
<st at erment 1>

el se
<st at enent 2>

e A statement is either a single statment (terminated witbr;} block of statements inside}
24-7: If test
e What can we have as the test of an if statement?
e Boolean valued expression
24-8: If test

o What can we have as the test of an if statement?

e boolean variable

o function that returns a boolean value

e comparisorx < yorx !'= 0

e Combination of boolean expressions, using hgt and &&), or (| |)

24-9: Boolean Variables

CS112-2012S-24 Final Review |

e Hold the value true or false

e Can be used in test (if, while, etc)

bool ean b;

bool ean c;

b = true;

c =b || false;

b =(3 <10) && (5 > 11);
c =!b && c;

24-10:if Gotchas

e Whatis (likely) wrong with the following code?

if (x = 0)
z

y

0
! X;
! X;

T o |l

24-11:if Gotchas

e Whatis (likely) wrong with the following code?

if (x 1=0)
{
z = al x;
y =b/ x;
}

e Moral: Always use{} in if statements, even if they are not necessary

24-12:while loops

whi | e(test)
{

<l oop body>
}

e Evaluate the test

If the test is true, execute the body of the loop

Repeat

Loop bodymay be executed 0 times
24-13:do-while loops

do

{
<l oop body>
} while (<test>);

e Execute the body of the loop

o If the test is true, repeat

CS112-2012S-24 Final Review |

e Loop body isalways executed at least once

24-14:while vs. do-while

e What would happen if:

e Found a while loop in a piece of code
e Changed to to a do-while (leaving body of loop and test theejam

e How would the execution be different?

24-15: while vs. do-while

e What would happen if:

e Found a while loop in a piece of code
e Changed to to a do-while (leaving body of loop and test theejam

e How would the execution be different?

¢ If the while loop were to execute 0 times, do-while will exee(at least!) one time

e |f the while loop were to execute 1 or more timelsguld to the same thing ...

e ... exceptif the test had side effects

24-16: Side Effects

cl ass Bool Fun

private int size;
bool ean cal | edTooMuch()

return (++size > 4)
}
}
/1 in main:
Bool Fun bf = new Bool Fun();
while (!bf.calledTooMich())

System out. print("x");

24-17: Side Effects

class Bool Fun

private int size;
bool ean cal | edTooMuch()

return (++size > 4)

}

/1 in main:

Bool Fun bf = new Bool Fun();
do

{

Systemout. print("x");
} while (!bf.calledTooMuch());

24-18:for loops

for (<init> <test>; <inc>)

{
}

<body>

e Equivalentto:

CS112-2012S-24 Final Review |

<init>
whi | e(<t est >)
{
<body>
<i nc>
}

24-19:for loops

for (nunber = 1; nunber < 10; nunber ++)

{
System out . print("Nunber is " + nunber);
}
e Equivalentto:
nunber = 1;
whi | e(nunber < 10)
{
System out . print("Nunber is " + nunber);
nunber ++;
}

24-20: Strings
e Strings in Java are objects

e Contain both methods and data

e Data is the sequence of characters (tgpar) that make up the string
e Strings have a whole bunch of methods for string processing

24-21: Strings
e Strings in Java are objects

e Strings are stored on the heap, like all other objects
e Data is stored as an array of characters
e Strings are immutable (once created, can’t be changed)

24-22: String Literals

String s;
s = "Dog";

¢ "Dog” is called aString Literal

e Anything in quotation marks is a string literal
e Systemout.println("Hello There")

24-23: String Literals

e Any time there is a string literal in your code, there is anligipcall to “new”

CS112-2012S-24 Final Review |

e A new string object is created on the heap
e Data is filled in to match the characters in the string literal
e Pointer to that object is returned

String s;
s = "MyString"; // Inplicit call to new here!

24-24: Stack vs. Heap |

public void foo()

{
int x = 99;
char y = '¢’;
String z = "c";
String r = "cat";
float w = 3.14;
}

24-25:Immutable Strings

e Strings aremmutable

e Once you create a string, you can’t change it.

String s = "Car"; /1 Create a block of nenory containing 'car’
/1 Return a pointer to this block of nmenory

unknown. f oo(s) ; /1 This function can't mess with contents of s

Systemout. println(S); Il s is guaranteed to be "Car" here

24-26: Immutable Strings

e Stringobjectsare immutable
e Once a string object is created, it can’t be changed
e Stringvariables can be changed

e Create a new String object, assign it to the variable

String s = "dog";
s = "cat";

24-27:*Mutable” Objects

public class | CanChange
private int x;
public | CanChange(int initialX)
this.x = initial X
Z)ubl icint getX()
{ return this.x;
i)ubl c void setX(int newx)
{ this.x = newX;

}
}

24-28:“Mutable” Objects

CS112-2012S-24 Final Review |

| CanChange ¢ = new | CanChange(4);

c.setX(11); [// Changed the value in object
/1l ¢ points to

Systemout.println(c.getX());

e Created an object of type ICanChange

e Changed the data within that object

24-29:“Mutable” Objects

| CanChange ¢ = new | CanChange(4);
¢ = new | CanChange(11);
Systemout.println(c.getX());

e Created an object of type ICanChange, with value 4
o Created aew object of type ICanChange, with value 11
e Throw away the old object

24-30:“Mutable” Objects

| CanChange ¢ = new | CanChange(4);
StrangeC ass s = new StrangeC ass(); // Don't know what this does ...

s.foo(c);

Systemout. println(c.getX());

24-31:“*Mutable” Objects

public class Stranged ass
voi d foo(lCanChange a)
{
a.set X(99);

}

24-32:“Immutable” Object

public class | Cant Change
private int x;
public | CanChange(int initialX)
this.x =initialX;
Z)ublic int getX()
{ return this.x;

}

24-33:“Immutable” Object

| Cant Change ¢ = new | Cant Change(13);
Systemout.println(c.getX());

¢ = new | Cant Change(37);
Systemout.println(c.getX());

e Create a new object, have c¢ point to this new object

e Old object didn't change, but the value of c did

CS112-2012S-24 Final Review |

24-34:“Immutable” Object

| Cant Change ¢ = new | Cant Change(13);
Strange s = new Strange();

s.foo(c);
Systemout.println(c.getX());

e Do we know anything about what the printin will ouput?

24-35:“Immutable” Objects

public class Strange

voi d foo(l Cant Change icc)
{

/1 W can't change the value of x stored inicc
Il directly (private, no setters)
11
/1 Best we can do is change what icc points to ...
icc = new | Cant Change(99);
11 icc.getX() would return 99 here, but what about
11 the calling function?
}
}

24-36: Methods

e Classes can contain both data and methods
e When a method is called:

e Calculate values of all method parameters (including initathis parameter)

Copy values of parameters into activation record of new oakth
Execute method, using activation record for local variable

e When method is completed, pop activation record off thekstac

24-37: Methods

class MO ass public static void main(String args[])
public int x; int x;
public int y; M/Class ¢ = new WC ass();
x = 3;
int foo(int w c.X = 4;
c.y =5;
int gq x = c.foo(x);
q=Xx+Ww Systemout. println(x);
return g+y; }

}
24-38: Methods

class Md ass public static void main(String args[])
public int x; int x;
public int vy; M d ass ¢ = new MC ass();
X = 3;

int foo(int w c.x = 4;
{ c.y =5

int qg; x = c.bar(x);

q =X+ W Systemout. println(x);

return g+y; }

}
int bar(int p)

return foo(x) + foo(p);
}
}

24-39: Collections of Data

e We want to bundle a bunch of values together

CS112-2012S-24 Final Review |

e Want to represent several different values using a singiaivia
e We can:

e Create a class with several instance variables
e Create an array

24-40: Arrays

e Arrays are objects

e Access elements using [] notation

e Need to declare the size of the array when it is created

e Can'’t change the size of an array once it is created

e Get the length of the array using public length instanceadei
24-41: Arrays

e Two ways to declare arrays:

<typenane>[] vari abl eNane;
<t ypenane> vari abl eName[];

e Examples:
int A[]; /1 Ais an array of integers
int[] B; /1 Bis an array if integers

String C[]; // Cis an array of strings

24-42: Arrays: New

o Like all other objects, Arrays are stored on the heap
e int Al] justallocates space for a pointer
e Need to call new to create the actual array

new <type>[<si ze>]

24-43: Arrays: New

e Show contents of memory after each line:

int AlT;
int B[];
A = new int[10];
B = newint[5];

AL 7] = 4
B[2] = 5;
B[5] = 13; /// RUNTI ME ERROR!

24-44: Arrays: Copying

CS112-2012S-24 Final Review |

10

int Al]
int B[]

new i nt[Sl ZE] ;
new i nt[Sl ZE] ;

// Code to store data in B
A = B;

e What do you think this code does?
e What happens when we assigmy object to another object?
24-45: Arrays: Copying

int Al] = new int[SIZE];
int B[] = new int[SIZE];

/] Code to store data in B
A = B;

e How could we copy the data from B into A
¢ (A and B should point to different memory locations, have sa@ues
24-46: Arrays: Copying

int Al] = new int[Sl ZE];
int B[] = new int[SIZE];

// Code to store data in B
for (int i =0; i < B.length; i++)

ALl = Bl[i];
}

24-47: Array: Copying

int AJ] = new int[5];

int B[] = newint[5];

int d1J;

for (int i =0; i <5; i++)
Ali]l =i,

for (int i =0; i <5; i++)
Bli] = Ali];

C=A

B[2] = 10;

2] = 15;

24-48: Arrays of Objects

e We can have arrays of objects, as well as arrays of integers

CS112-2012S-24 Final Review |

11

Poi nt pointArray[] = new Point[10];
poi nt Array[3] . set X(3);

e What happens?

o (refer to Java documentation for Point objects)
24-49: Arrays of Objects
Poi nt pointArray[] = new Point[10];

for (int i =0; i < 10; i++)
{

}

pointArray[i] = new Point (i, i);

e How would you calculate the averagevalue of all elements in the array?
24-50: Arrays of Objects

e How would you calculate the averagevalue of all elements in the array?

Point pointArray[] = new Point[10];

/1 Fill in pointArray

11

doubl e sum = 0.0;

for (int i =0; i < pointArray.length; i++)

{

sum = sum + pointArray[i].getX();

sum = sum/ pointArray.|ength;
24-51:2D Arrays

e We can create 2D arrays as well as 1D arrays
e Like matrices
e 2D array is really just an array of arrays

24-52:2D Arrays

int x[1[1; /1 Declare a 2D array
int[1[1 v; /1 Alternate way to declare 2D array

new int[5][10]; // Create 50 spaces
new int[4][4]; /1 create 16 spaces

X
y

24-53:2D Arrays

int x[][]; /| Declare a 2D array
X = new int[5][5]; /1l Create 25 spaces
x[2][3] = 11;

x[3][3] = 2

x[4] [5] 7; /1 ERROR! |ndex out of bounds

CS112-2012S-24 Final Review | 12

24-54:2D Arrays
e How would we create a 9x9 array, and set every value in it tobe 3
24-55:2D Arrays

e How would we create a 9x9 array, and set every value in it tobe 3

int board[][];
board = new int[9][9];
for (int i =0; i <9; i++)
for int (j =0; j <9; j++)
board[i][j] = 3;

24-56: Using Arrays

e Need to declare array size before using them

Don't always know ahead of time how big our array needs to be

Allocate more space than we need at first

Maintain a second size variable, that has the number of elenirethe array we actually care about

¢ Classes that use arrays often will have an array instanéag@yand a size instance variable (how much of the
array is used)

24-57: Arrays
e On board: What memory looks like for the following:

public static void main(String args)

{

int Al];

int x;

String B[]; <-- Show menory here

A =newint[5];

B = new String[3];

<-- Show nmenory here

}

24-58:Recursion
e The way function calls work give us a fantastic tool for sotyproblems

e Make the problem slightly smaller
e Solve the smaller probelumsing the very function that we are writing
e Use the solution to the smaller problem to solve the origimablem

24-59: Recursion

e What s a really easy (small') version of the problem, thaiuld solve immediately? (Base case)

e How can | make the problem smaller?

CS112-2012S-24 Final Review | 13

e Assuming that | could magically solve the smaller problemwitould | use that solution to solve the original
problem (Recursive Case)

24-60: Recursion

e Example: Factorial

enl=nxn—1)x(n—2)%..%x3*%x2x1
e 5!l =5%x4%3%x2x1=120
o 8 =8x7T*6+5x4*3+2x1=40320

e What is the base case? That s, a small, easy version of théeprahat we can solve immediately?
24-61:Recursion — Factorial
e Example: Factorial
enl=nxn—1)xn—2)%..%3x2x1
e What is a small, easy version of the problem that we can solveddiately?
o 1l ==1.
24-62: Recursion — Factorial

e How do we make the problem smaller?

e What's a smaller problem thasl ?
e (only aliitle bit smaller)

24-63: Recursion — Factorial

e How do we make the problem smaller?

e What's a smaller problem thail ?
e (n—1)!

e If we could solve(n — 1)!, how could we use this to solve ?
24-64: Recursion — Factorial

e How do we make the problem smaller?

e What's a smaller problem thail ?
e (n—1)!

e If we could solve(n — 1)!, how could we use this to solve ?
enl=(n—-1lxn

24-65: Recursion — Factorial

CS112-2012S-24 Final Review |

14

int factorial (int n)

{
if (n==1)
{

return 1;

}

el se

{

}
}

return n * factorial(n - 1);

24-66: Recursion — Factorial

e (O!is definedto be 1

e We can modifyf act ori al to handle this case easily

24-67: Recursion — Factorial

e (O!is definedto be 1

e We can modifyf act ori al to handle this case easily

int factorial (int n)
if (n==0)
{

return 1;

}

el se

{

}
}

return n * factorial(n - 1);

24-68: Recursion

e To solve a recursive problem:

e Base Case:
e \ersion of the problem that can be solved immediately
e Recursive Case

e Make the problem smaller
e Call the function recursively to solve the smaller problem
e Use solution to the smaller problem to solve the larger pnubl

24-69: Recursion — Tips

e When writing a recursive function

e Don't think about how the recursive function works all theywown
¢ Insteadassume that the function just works for a smaller problem

e Recursive Leap of Faith
e Use the solution to the smaller problem to solve the largeblem

24-70: Recursion — NumDigits

e Write a method that returns the number of base-k digits inrabrar n
int numDigits(int n, int k)

e nunDi gi ts(20201, 10) ==

CS112-2012S-24 Final Review | 15

e nunDi gi ts(34, 10) == 2
e nunDi gi t s(3050060, 7) ==
e nunmDi gi ts(137, 2) == 8

e What is the base case?
e How can we make the problem smaller?
e How can we use the solution to the smaller problem to solvetiginal problem?

24-71:Recursion — NumDigits

int nunDigits(int n, k)
if (n<Kk)
{

return 1;

}

el se

{

}
}

return 1 + numDigits(n / k);

24-72: Recursion Problems
e Write a recursive function that returns the smallest vatuie firstsi ze elements of an array of integers
eint mninmunm(int A[], int size)

24-73:Recursion Problems

int mininun(int Al], int size)
if (size ==0)
return null;
if (size == 1)
return A[0];
int smallest = mnimnmA size - 1);

if (smallest < A[size - 1])
return smallest;

el se
return Alsize - 1];

}

24-74: Static

e Normally, can only call methods on classes when we creat@uséence of the class

e Methods can rely on instance variables to work properly
e Need to create an instance of a class before there are aapdestariables
e What would the size() method return for an ArrayList if ther@s not an instance to check the size of?

24-75: Static

e Some methods don’t operate on an instance of the class —ymotdns that don't use instance variables at all

e Math functions like min, or pow

e parselnt — takes a string as an input parameter, and retuensteger value of the string parselnt("123")
returns 123

e Seems silly to have to instantiate an object to use theseaueth

e static to the rescue!

24-76: Static

CS112-2012S-24 Final Review | 16

¢ |f we declare a method as static, it does not rely on an instahthe class
e Can call the method without creating an instance first
e Use theClass Nameto invoke (call) the method

double x = Math.mn(3.4, 6.2);
double z = Math.sqgrt(x);

24-77:Consants

e Having 3.14159 appearing all over your code is considerddshade

e Could end up using different values for pi in different pla¢8.14159 vs. 3.1415926)

¢ If you want to change the value of pi (to add more digits, fatémce), need to search through all of your
code to find it

¢ In general, any time you have a “magic number” (that is, artrarty numeric literal) in your code, it should
probably be a symbolic constant instead.

e The “final” modifier is used to prevent you from changing th&rezof a variable

24-78: Consants

cl ass Cal endar

{

final int MONTHS IN YEAR = 12;

final int DAYS IN WEEK = 12;

final int DAYS IN YEAR = 365;

// Methods that use the above constants
}

e Everyinstance of class Calendar will contain those 3 végg@b
e Somewhat wasteful
e Need to instantiate an object of type Calendar to access them
24-79: Consants: Static
e We can declare variables to be static as well as methods
e Typically used for constants (Math.pi, Math.e)
e Access them using class name, not instance name (justdilie stethods)
e You shouldonly use static variables for constants
e public static final float pi = 3.14159;
24-80: Globals: Static
e Itis technically possible to have a variable that is pubtid atatic, but not final

e Can be accesed anywhere
e Can bechanged anywhere

e While the compiler will allow it, this is (usually!) aery bad idea. Why?

