
Intro to Computer Science II
CS112-2012S-04

Strings
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

04-0: Types in Java

Primative Types
Hold simple values
Can be stored on the stack

(but can be stored on the heap if they are
instance variables in classes)

integers: byte (8 bits), short (16 bit) int (32
bit) long (64 bit)
real numbers: float (32 bit) double (64 bit)
boolean: true or false value
char: single character (16 bit, unicode)

in C, a char is 8 bits, uses ASCII

04-1: Types in Java

Objects
Collection of data and methods
Always stored on the heap

Pointer to object can be on the stack
Created with a call to “new”

04-2: Strings

Strings in Java are objects

Contain both methods and data
Data is the sequence of characters (type char)
that make up the string
Strings have a whole bunch of methods for
string processing

04-3: Strings

Strings in Java are objects
Strings are stored on the heap, like all other
objects
Data is stored as an array of characters (more
on arrays next week. Similar to python lists)

04-4: String Literals

String s;
s = "Dog";

"Dog" is called a String Literal
Anything in quotation marks is a string literal
System.out.println("Hello There")

04-5: String Literals

Any time there is a string literal in your code, there
is an implicit call to “new”

A new string object is created on the heap
Data is filled in to match the characters in the
string literal
Pointer to that object is returned

String s;
s = "MyString"; // Implicit call to new here!

04-6: Stack vs. Heap I

public void foo()
{

int x = 99;
char y = ’c’;
String z = "c";
String r = "cat";
float w = 3.14;

}

04-7: Immutable Strings

Strings are immutable

Once you create a string, you can’t change it.

String s = "Car"; // Create a block of memory containing ’car’

// Return a pointer to this block of memory

unknown.foo(s); // This function can’t mess with contents of s

System.out.println(S); // s is guaranteed to be "Car" here

04-8: Immutable Strings

String objects are immutable
Once a string object is created, it can’t be
changed

String variables can be changed
Create a new String object, assign it to the
variable

String s = "dog";
s = "cat";

04-9: “Mutable” Objects

public class ICanChange

{

private int x;

public ICanChange(int initialX)

{

this.x = initialX;

}

public int getX()

{

return this.x;

}

publc void setX(int newX)

{

this.x = newX;

}

}

04-10: “Mutable” Objects

ICanChange c = new ICanChange(4);
c.setX(11); // Changed the value in object

// c points to
System.out.println(c.getX());

Created an object of type ICanChange

Changed the data within that object

04-11: “Mutable” Objects

ICanChange c = new ICanChange(4);
c = new ICanChange(11);
System.out.println(c.getX());

Created an object of type ICanChange, with value
4

Created a new object of type ICanChange, with
value 11

Throw away the old object

04-12: “Mutable” Objects

ICanChange c = new ICanChange(4);

StrangeClass s = new StrangeClass(); // Don’t know what this does ...

s.foo(c);

System.out.println(c.getX());

04-13: “Mutable” Objects

public class StrangeClass

{

void foo(ICanChange a)

{

a.setX(99);

}

}

04-14: “Immutable” Object

public class ICantChange

{

private int x;

public ICanChange(int initialX)

{

this.x = initialX;

}

public int getX()

{

return this.x;

}

}

04-15: “Immutable” Object

ICantChange c = new ICantChange(13);
System.out.println(c.getX());
c = new ICantChange(37);
System.out.println(c.getX());

Create a new object, have c point to this new object

Old object didn’t change, but the value of c did

04-16: “Immutable” Object

ICantChange c = new ICantChange(13);
Strange s = new Strange();

s.foo(c);
System.out.println(c.getX());

Do we know anything about what the println will
ouput?

04-17: “Immutable” Objects

public class Strange

{

void foo(ICantChange icc)

{

// We can’t change the value of x stored in icc

// directly (private, no setters)

//

// Best we can do is change what icc points to ...

icc = new ICantChange(99);

// icc.getX() would return 99 here, but what about

// the calling function?

}

}

04-18: Back to Strings

Strings are objects, like any other object

Stored on the heap, but immutable

Whole host of useful methods for string
manipulation

04-19: String Methods

public char charAt(int i): returns the character at
index i (starting at 0)

String s = "cartwheel";
char c = s.charAt(2);

What value would c now have?

04-20: String Methods

public int length(): returns the length of the string

String s = "cartwheel";
int len = s.length();

What value would len now have?

04-21: String Methods

pubic String substring(int beginIndex): returns a
new string, starting with beginIndex

String s = "cartwheel";
String s2 = s.substring(4);

s2 would have the value “wheel”

What value would s now have?

04-22: String Methods

public String substring(int beginIndex, endIndex):
returns a new string, starting with beginIndex, with
last char at positn (endIndex - 1)

String s = "cartwheel;
String s2 = s.substring(1, 4);

s2 would have the value “art”

What value would s now have?

04-23: String Methods

public String concat(String str) : returns a new
string, consisting of this string concatenated with
str

String s1 = "dog";
String s2 = "house";
Sring s3 = s1.concat(s2);

s3 would have the value “doghouse”

What value would s1, s2 have?

04-24: String Methods

public String toLowerCase() : returns a new string,
consisting of this string force into lower case

String s1 = "ThisIsAString";
String s2 = s1.toLowerCase();

s2 would have the value “thisisastring”

What value would s1 have?

04-25: String Methods

public String toLowerCase() : returns a new string,
consisting of this string force into lower case

String s1 = "ThisIsAString";
s1.toLowerCase();

What value would s1 have?

What just happened?

	{small lecturenumber -	heblocknumber :} Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Literalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Literalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stack vs. Heap Iaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Immutable Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Immutable Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Mutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ``Immutable'' Objectsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Back to Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} String Methodsaddtocounter {blocknumber}{1}

