1. Give the $\Theta()$ running time of the following code fragments, in terms of n. Show your work! (Be careful, some of these are tricky!)

(a) for (i=0; i < n; i++)
 {
 for (j = n; j > 1; j--)
 sum++;
 for (j = n; j > 1; j = j - 3)
 sum++
 }
Total: $O(n^2)$

(b) for (i=1; i < n; i = i + 2)
 for (j = n; j > n / 2; j = j - 2)
 for (k = 1; k < n / 2; k = k * 2)
 sum++;
Total: $O(n^2 \lg n)$

(c) for (i=1; i < n; i++)
 {
 for (j = 1; j < i; j++)
 sum++;
 for (j = 1; j < n; j++)
 sum++;
 for (j = 1; j < n; j = j * 2)
 sum++;
 for (j = 0; j < n; j = j + 2)
 sum++
 }
Total: $O(n^2)$
2. Consider the following function:

```c
int recursive(int n)
{
    if (n <= 1)
        return 1;
    else
        return recursive(n - 1) + recursive(n - 1) + recursive(n - 1);
}
```

(a) What does this function calculate?
This function calculates \(f(n) = 3^{n-1} \) for \(n > 1 \) and \(f(n) = 1 \) for \(n \leq 0 \)

(b) Give a recurrence relation \((T(n) = \ldots)\) for this function (be sure to include both base and recursive cases!)

\[
\begin{align*}
T(0) &= c_1 \\
T(1) &= c_1 \\
T(n) &= c_2 + 3T(n-1)
\end{align*}
\]

(c) Solve the recurrence relation to get the \(\Theta() \) running time of the function, in terms of \(n \). Show your work, using either repeated substitution, the master method, or a recursion tree.

\[
\begin{align*}
T(n) &= 3T(n-1) + c_2 \\
 &= 3[3T(n-2) + c_2] + c_2 \\
 &= 9T(n-2) + 3c_2 + c_2 \\
 &= 9[3T(n-3)c_2] + 3c_2 + c_2 \\
 &= 27T(n-3)c_2 + 3c_2 + c_2 \\
 &= 27[3T(n-4) + c_2] + 9c_2 + 3c_2 + c_2 \\
 &= 81T(n-4) + 27c_2 + 9c_2 + 3c_2 + c_2 \\
 &\vdots \\
 &= \sum_{i=0}^{k} 3^ic_2 + T(n-k)
\end{align*}
\]

Set \(k=n \), giving us

\[
\left(\sum_{i=0}^{n-1} 3^ic_2\right) + c_1 \in O(3^n)
\]
int recursive2(int n)
{
 if (n <= 1)
 return n;
 sum = 0;
 for (int i = 0; i < n; i++)
 sum++
 return recursive2(n/3) + recursive2(n/3) + recursive2(n/3) + sum;
}

(a) Give a recurrence relation (\(T(n) = \ldots \)) for this function (be sure to include both base and recursive cases!)

\[
\begin{align*}
T(0) &= c_1 \\
T(1) &= c_1 \\
T(n) &= c_2 n + 3T(n/3)
\end{align*}
\]

(b) Solve the recurrence relation to get the \(\Theta() \) running time of the function, in terms of \(n \). Show your work, using either repeated substitution, the master method, or a recursion tree.

By the master method: \(T(n) = aT(n/b) + f(n) \), where

\[
\begin{align*}
a &= 3 \\
b &= 3 \\
f(n) &= n
\end{align*}
\]

\(n^{\log_b a} = n^{\log_3 3} = n \). \(f(n) = n \in \Theta(n^{\log_b a}) \) so by the second case of the master method, \(T(n) \in \Theta(n \log n) \)