
Data Structures and Algorithms
CS245-2017S-10

Sorting

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

10-0: Main Memory Sorting

All data elements can be stored in memory at the
same time

Data stored in an array, indexed from 0 . . . n− 1,
where n is the number of elements

Each element has a key value (accessed with a
key() method)

We can compare keys for <, >, =

For illustration, we will use arrays of integers –
though often keys will be strings, other
Comparable types

10-1: Stable Sorting

A sorting algorithm is Stable if the relative order of
duplicates is preserved

The order of duplicates matters if the keys are
duplicated, but the records are not.

3 1 2 1 1 2 3
B
o
b

J
o
e

E
d

A
m
y

S
u
e

A
l

B
u
d

Key

Data

1 1 1 2 2 3 3
A
m
y

J
o
e

S
u
e

E
d

A
l

B
o
b

B
u
d

Key

Data

A non-Stable sort

10-2: Insertion Sort

Separate list into sorted portion, and unsorted
portion

Initially, sorted portion contains first element in the
list, unsorted portion is the rest of the list

(A list of one element is always sorted)

Repeatedly insert an element from the unsorted
list into the sorted list, until the list is sorted

10-3: Θ() For Insertion Sort

Running time ∝ # of comparisons

Worst Case:

10-4: Θ() For Insertion Sort

Running time ∝ # of comparisons

Worst Case: Inverse sorted list

of comparisons:

10-5: Θ() For Insertion Sort

Running time ∝ # of comparisons

Worst Case: Inverse sorted list

of comparisons:

n−1∑

i=1

i ∈ Θ(n2)

10-6: Θ() For Insertion Sort

Running time ∝ # of comparisons

Best Case:

10-7: Θ() For Insertion Sort

Running time ∝ # of comparisons

Best Case: Sorted List

of comparisons:

10-8: Θ() For Insertion Sort

Running time ∝ # of comparisons

Best Case: Sorted List

of comparisons:

n− 1

10-9: Bubble Sort

Scan list from the last index to index 0, swapping
the smallest element to the front of the list

Scan the list from the last index to index 1,
swapping the second smallest element to index 1

Scan the list from the last index to index 2,
swapping the third smallest element to index 2
. . .

Swap the second largest element into position

(n− 2)

10-10: Θ() for Bubble Sort

Running time ∝ # of comparisons

Number of Comparisons:

10-11: Θ() for Bubble Sort

Running time ∝ # of comparisons

Number of Comparisons:

n−1∑

i=1

i ∈ Θ(n2)

10-12: Selection Sort

Scan through the list, and find the smallest element

Swap smallest element into position 0

Scan through the list, and find the second smallest
element

Swap second smallest element into position 1
. . .

Scan through the list, and find the second largest
element

Swap smallest largest into position n− 2

10-13: Θ() for Selection Sort

Running time ∝ # of comparisons

Number of Comparisons:

10-14: Θ() for Selection Sort

Running time ∝ # of comparisons

Number of Comparisons:

n−1∑

i=1

i ∈ Θ(n2)

10-15: Improving Insertion Sort

Insertion sort is fast if a list is “almost sorted”

How can we use this?

Do some work to make the list “almost sorted”

Run insertion sort to finish sorting the list

Only helps if work required to make list “almost

sorted” is less than n2

10-16: Shell Sort

Sort n/2 sublists of length 2, using insertion sort

Sort n/4 sublists of length 4, using insertion sort

Sort n/8 sublists of length 8, using insertion sort
. . .

Sort 2 sublists of length n/2, using insertion sort

Sort 1 sublist of length n, using insertion sort

10-17: Shell’s Increments

Shell sort runs several insertion sorts, using
increments

Code on monitor uses “Shell’s Increments”:
{n/2, n/4, . . . 4, 2, 1}

Problem with Shell’s Increments:

Various sorts do not interact much

If all large elements are stored in large indices,
and small elements are stored in even indices,
what happens?

10-18: Other Increments

Shell’s Increments: {n/2, n/4, . . . 4, 2, 1}

Running time: O(n2)

“/3” increments: {n/3, n/9, . . . , 9, 3, 1}

Running time: O(n
3

2)

Hibbard’s Increments: {2k − 1, 2k−1 − 1, . . . 7, 3, 1}

Running time: O(n
3

2)

10-19: Shell Sort: Best case

What is the best case running time for Shell Sort
(using Shell’s increments)

When would the best case occur?

10-20: Shell Sort: Best case

What is the best case running time for Shell Sort
(using Shell’s increments)

When would the best case occur?
When the list was originally sorted

How long would each pass through Shell Sort
take?

10-21: Shell Sort: Best case

What is the best case running time for Shell Sort
(using Shell’s increments)

When would the best case occur?
When the list was originally sorted

How long would each pass through Shell Sort
take?
Θ(n)

How Many Passes?

10-22: Shell Sort: Best case

What is the best case running time for Shell Sort
(using Shell’s increments)

When would the best case occur?
When the list was originally sorted

How long would each pass through Shell Sort
take?
Θ(n)

How Many Passes?
lg n

Total running time?

10-23: Shell Sort: Best case

What is the best case running time for Shell Sort
(using Shell’s increments)

When would the best case occur?
When the list was originally sorted

How long would each pass through Shell Sort
take?
Θ(n)

How Many Passes?
lg n

Total running time?

Θ(n lg n)

10-24: Stability

Is Insertion sort stable?

Is Bubble Sort stable?

Is Selection Sort stable?

Is Shell Sort stable?

10-25: Stability

Is Insertion sort stable? Yes!

Is Bubble Sort stable? Yes!

Is Selection Sort stable? No!

Is Shell Sort stable? No!

Note that minor changes to the stable sorting algorithms

will make them unstable (for instance, swaping A[i] and

A[i + 1] when A[i] ≥ A[i + 1], not just when A[i] >

A[i+ 1]

	{small lecturenumber -	heblocknumber :} Main Memory Sortingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stable Sortingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
For Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bubble Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Bubble Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Bubble Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Selection Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Selection Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Selection Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Insertion Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell's Incrementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Other Incrementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sort: Best caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sort: Best caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sort: Best caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sort: Best caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shell Sort: Best caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stabilityaddtocounter {blocknumber}{1}

