Data Structures and Algorithms
CS245-2017S-11

Sorting in ©(nlgn)

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

11-0: Merge Sort — Recursive Sorting

® Base Case:
e Alist of length 1 or length O is already sorted

® Recursive Case:
e Split the list in half
* Recursively sort two halves
* Merge sorted halves together

Example: 51826437

11-1: Merging

® Merge lists into a new temporary list, 1°

® Maintain three pointers (indices) z, 7, and n
e ¢ Is index of left hand list
* 7 is index of right hand list
* n IS Index of temporary list 1°

® If Als] < AlJ]
e T'\n] = Ali], increment n and i

® ¢clse
e T'\ln] = Alj], increment n and j

Example: 1258 and 3467

11-2: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;
T(n) =ncy+ 2T (n/2)

11-3: O() for Merge Sort

= ncz + 21 (n/2)

= ncs + 2(n/2c;
= 2ncs + 4T (n/4)

= for some constant c;
— (o for some constant ¢,
= ncz + 21 (n/2) for some constant c;

2T (n/4))

11-4: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;
T(n) =ncy+ 2T (n/2)

= ncs + 2(n/2c;
= 2ncs + 4T (n/4)

2T (n/4))

= 2ncs + 4(n/dcs + 2T (n/8))

= 3ncz + 81 (n/8))

11-5: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;
T(n) =ncy+ 2T (n/2)

= ncs + 2(n/2c3 + 2T (n/4))
= 2ncs + 4T (n/4)

= 2ncs + 4(n/dcs + 2T (n/8))
= 3ncz + 81 (n/8))

= 3ncs + 8(n/8cz + 2T (n/16))
= 4ncs + 167 (n/16)

11-6: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;
T(n) =ncy+ 2T (n/2)

= ncs + 2(n/2c3 + 2T (n/4))
= 2ncs + 4T (n/4)

= 2ncs + 4(n/dcs + 2T (n/8))
= 3ncz + 81 (n/8))

= 3ncs + 8(n/8cz + 2T (n/16))
= 4ncs + 167 (n/16)

= Sncs + 32T (n/32)

11-7: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;
T(n) =ncy+ 2T (n/2)

= ncs + 2(n/2c;
= 2ncs + 4T (n/4)

2T (n/4))

= 2ncs + 4(n/dcs + 2T (n/8))

= 3ncz + 81 (n/8))

= 3ncs + 8(n/8cz + 2T (n/16))
= 4ncs + 167 (n/16)
= Sncs + 32T (n/32)
= kncs + 28T (n/2%)

11-8: O() for Merge Sort

T0) =c
T(1) = c
T(n) = kncs + 2T (n/2%)
Pick a value for k such that n /2" = 1:

n/28 = 1
n = 2F
len = k

T(n) = (lgn)nc; + 28" (n/2%")
= cnlgn+nT(n/n)
= cnlgn +nT(1)

= cnlgn + cn
e O(nlgn)

11-0: O() for Merge Sort

T(n)

11-10: O() for Merge Sort

11-11: O() for Merge Sort

c*n
7mn<

T(n/4) T(n/4) T(n/4) T(nl4)

11-12: O() for Merge Sort

11-13: O() for Merge Sort

11-14: O() for Merge Sort

lgn
levels

- - -

* * *

& & &
~~

O(n Il g n

Total time= c*n | g n

11-15: O() for Merge Sort

T0) =¢ for some constant c;
T(1) = cy for some constant ¢,
T(n) =mnc3+ 2T (n/2) for some constant c;

T(n) = aT'(n/b) + f(n)
a=2,b=2,f(n)=n
nlogba _ nlog22 —n € @(n)
By second case of the Master Method,
T(n) € ©(nlgn)

11-16: Divide & Conquer

Merge Sort:

® Divide the list two parts
* No work required — just calculate midpoint

® Recursively sort two parts

® Combine sorted lists into one list
e Some work required — need to merge lists

11-17: Divide & Conquer

Quick Sort:

® Divide the list two parts

 Some work required — Small elements in left
sublist, large elements in right sublist

® Recursively sort two parts

® Combine sorted lists into one list
* No work required!

11-18: Quick Sort

® Pick a pivot element

® Reorder the list:
e All elements < pivot
* Pivot element
e All elements > pivot

® Recursively sort elements < pivot
® Recursively sort elements > pivot

Example: 3728146

11-19: Quick Sort - Partitioning

Basic Idea:

® Swap pivot elememt out of the way (we’'ll swap it
back later)
® Maintain two pointers, = and 7
* 1 points to the beginning of the list
* j points to the end of the list
® Move ¢ and j in to the middle of the list — ensuring
that all elements to the left of ¢ are < the pivot, and

all elememnts to the right of y are greater than the
pivot

® Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

® Pick a pivot index

® Swap Alpivotindex] and A[high]

® Seti <+ low, 5 < high—1

® while (1 <= j)
e while A[i] < Alpivot|, increment i
e while A[j] > A|pivot], decrement i
e swap Ali| and A|j]
* increment 7, decrement j

® swap Ali| and A|pivot]

11-21: O() for Quick Sort

® Coming up with a recurrence relation for quicksort
IS harder than mergesort

® How the problem is divided depends upon the data
e Break list into:

size 0, sizen — 1
size 1, sizen — 2

size | (n — 1)/2], size [(n — 1)/2]

size n — 2, size 1
sizen— 1, size 0

11-22: O() for Quick Sort

Worst case performance occurs when break list into
size n — 1 and size 0

T(0) = ¢ for some constant ¢;
T(1) = cy for some constant ¢,
T(n) =ncs+T(n—1)+T(0) forsome constant c;
T(n) =ncs+T(n—1)4+T(0)

=T(n—1)+ ncs + ¢

11-23: O() for Quick Sort

Worst case: T'(n) =T (n — 1) + nes + ¢

T'(n)
=T(n—1) 4+ ncs + ¢

11-24: O() for Quick Sort

Worst case: T'(n) =T (n — 1) + nes + ¢

T'(n)

=T(n—1) 4+ ncs + ¢
=T(n—2)4+ (n—1)cs + c] + nes + ¢
=Tn—2)+n+(n—1))cz + 2¢,

11-25: O() for Quick Sort

Worst case: T'(n) =T (n — 1) + nes + ¢

T(n)

=T(n—1)+ ncs + ¢
=T(n—2)4+ (n—1)cs + c] + nes + ¢
=Tn—2)+n+(n—1))cz + 2¢,
=Tn—-3)+(n—2)cs+]+ (n—+(n—1))cz + 2¢,
=Tn—-3)+(n+n—1)+ (n—2))cs + 3¢

11-26: O() for Quick Sort

Worst case: T'(n) =T (n — 1) + nes + ¢

T(n)
=T(n—1)+ ncs + ¢
T(n—2)+ (n—1)cz + 3| +nez + ¢
=Tn—-2)+n+ (n—1))c3 + 2¢
Tn—3)+n—2)cs+c|+n+(n—1))c3+ 2

T
T

(
(

/,’L_
n_

3)
1)

+ (n -

-(n—1) H

+ (n -

- (n—2))es + 3¢y

-(n—1) -+

-(n—2)+ (n — 3))cs + 4cy

11-27: O() for Quick Sort

Worst case: T'(n) =T (n — 1) + nes + ¢

T'(n)

:T(n— 1)—|—TL63—|—CQ

T(n—2)+ (n—1)cs + c] + nes + ¢
=Tn—-2)+(n+n—1))c; + 2¢,

T(n—3)+ (n—2)cs+c] + (n+ (n—1))es + 2c
Tn—=3)+n+(n—1)+(n—2))cs + 3¢
Tnh—4)+n+n—-1)4+(n—-2)+(n—3))cs + 4c

— T(n— k) + (S 0 — i)es) + ke

11-28: O() for Quick Sort

Worst case:
T(n) =T(n—k)+ (i g (n —i)cs) + ke,
Set kK =n:

T(n) n—=k)+ (Zf:_oll(n —1)c3) + ke
n—n)+ O.._s(n—1i)cz) + ke
0) + (37 (n —1)es) + ke
O) + (30 ics) + ke

ML

11-20: O() for Quick Sort

T(n)

11-30: O() for Quick Sort

c*n

N

T(n-1) T(0)

11-31: O() for Quick Sort

/\

c*(n 1)

T(n- 2)\ 0)

11-32: O() for Quick Sort

/\

c*(n-1)
c*(n-Z)\CZ

T(n- 3)\(0)

11-33: O() for Quick Sort

/cn\ -
(A- 1) a2 c(n-1)+c2 .
levels
“(n- 2) c2 c*(n-2)+c2
(FI-B)\CZ c(n-3)+c2
c*(n-k)+c2

11-34: O() for Quick Sort

(n-1) C2 c(n-1)+c?2 "
levels
(n-2) C2 c(n-2)+c2
(n-S)\cz c(n-3)+c2
c*(n-k)+c2

Total time= c*n*(n+1)/2 + nc2
oO(n*)

11-35: O() for Quick Sort

Best case performance occurs when break list into size
[(n—1)/2] and size |[(n —1)/2]

T0) =c for some constant ¢,

T(1) = cy for some constant ¢,

T(n) =mnc3 + 27T (n/2) for some constant c;

This is the same as Merge Sort: ©O(nlgn)

11-36: Quick Sort?

If Quicksort is ©(n?) on some lists, why is it called
quick?

® Most lists give running time of O(nlgn): The
average case running time (assuming all
permutations are equall likely) is ©(nlgn)

* We could prove this by finding the running time
for each permutation of a list of length n, and
averaging them
- Math required to do this is a little beyond the

prerequisites for this class

* Consider what happens when the list is always
partitioned into a list of length /9 and a list of
lenth 8n./9 (recursion tree, on whiteboard)

11-37: Quick Sort?

If Quicksort is ©(n?) on some lists, why is it called
quick?

® Most lists give running time of O(n lgn)
e Average case running time is ©(nlgn)

® Constants are very small

e Constants don’'t matter when complexity is
different

 Constants do matter when complexity is the
same

What lists will cause Quick Sort to have ©(n?) perfor-
mance?

11-38: Quick Sort - Worst Case

® Quick Sort has worst-case performance when:
* The list is sorted (or almost sorted)

* The list is inverse sorted (or almost inverse
sorted)

® Many lists we want to sort are almost sorted!
® How can we fix Quick Sort?

11-39: Better Partitions

® Pick the middle element as the pivot
e Sorted and reverse sorted lists give good
performance
® Pick a random element as the pivot
* No single list always gives bad performance

® Pick the median of 3 elements
e First, Middle, Last
e 3 Random Elements

11-40: Improving Quick Sort

® |nsertion Sort runs faster than Quick Sort on small
lists

e Why?
® \We can combine Quick Sort & Insertion Sort

 When lists get small, run Insertion Sort instead
of a recursive call to Quick Sort

 When lists get small, stop! After call to Quick
Sort, list will be almost sorted — finish the job
with a single call to Insertion Sort

11-41: Heap Sort

® Copy the data into a new array (except leave out
element at index 0)

® Build a heap out of the new array

® Repeat:

* Remove the smallest element from the heap,
add it to the original array

® Until all elements have been removed from the
heap

® The original array is now sorted

Example: 317254

11-42: Heap Sort

® This requires ©(n) extra space

® We can modify heapsort so that it does not use
extra space

® Build a heap out of the original array, with two
differences:

e Consider element 0 to be the root of the tree
- for element ¢, children are at 2*i +1 and
2*i+2, and parentis at (¢ — 1)/2
- (examples)

 Max-heap instead of a standard min-heap
- For each subtree, element stored at root >
element stored in that subtree (instead of <,
as in a standard heap)

11-43: Heap Sort

® Build a heap out of the original array, with two
differences:

e Consider element 0 to be the root of the tree
- for element ¢, children are at 2*i +1 and
2*i+2, and parentis at (1 — 1)/2
- (examples)

 Max-heap instead of a standard min-heap
- For each subtree, element stored at root >
element stored in that subtree (instead of <,
as in a standard heap)

® Repeatedly remove the largest element, and insert
it in the back of the heap

Example: 317254

11-44: O() for Heap Sort

® Building the heap takes time ©(n)
® Each of the n RemoveMax calls takes time O(lgn)
® Total time: (nlgn) (also O(nlgn))

11-45: Stability

Sorting Algorithm | Stable?

Insertion Sort

Selection Sort

Bubble Sort

Shell Sort

Merge Sort

Quick Sort

Heap Sort

11-46: Stability

Sorting Algorithm | Stable?
Insertion Sort Yes
Selection Sort No
Bubble Sort Yes
Shell Sort No
Merge Sort Yes
Quick Sort No
Heap Sort No

	{small lecturenumber -	heblocknumber :} Merge Sort -- Recursive Sortingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Mergingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Merge Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conqueraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Divide & Conqueraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quick Sort - Partitioningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quick Sort - Partitioningaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {em Quick} Sort?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} {em Quick} Sort?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quick Sort - Worst Caseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Better Partitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Quick Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $Theta ()$
for Heap Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Stabilityaddtocounter {blocknumber}{1}

