Data Structures and Algorithms

CS245-2017S-11

Sorting in $\Theta(n \log n)$

David Galles

Department of Computer Science
University of San Francisco
Merge Sort – Recursive Sorting

- **Base Case:**
 - A list of length 1 or length 0 is already sorted

- **Recursive Case:**
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7
11-1: Merging

- Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
 - i is index of left hand list
 - j is index of right hand list
 - n is index of temporary list T
- If $A[i] < A[j]$
 - $T[n] = A[i]$, increment n and i
- else
 - $T[n] = A[j]$, increment n and j

Example: 1 2 5 8 and 3 4 6 7
\(T(0) = c_1 \) for some constant \(c_1 \)
\(T(1) = c_2 \) for some constant \(c_2 \)
\(T(n) = nc_3 + 2T(n/2) \) for some constant \(c_3 \)
11-3: $\Theta()$ for Merge Sort

$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = nc_3 + 2T(n/2)$ for some constant c_3

$T(n) = nc_3 + 2T(n/2)$

$= nc_3 + 2(n/2c_3 + 2T(n/4))$

$= 2nc_3 + 4T(n/4)$
11-4: $\Theta()$ for Merge Sort

- $T(0) = c_1$ for some constant c_1
- $T(1) = c_2$ for some constant c_2
- $T(n) = nc_3 + 2T(n/2)$ for some constant c_3

1. $T(n) = nc_3 + 2T(n/2)$
2. $= nc_3 + 2(n/2c_3 + 2T(n/4))$
3. $= 2nc_3 + 4T(n/4)$
4. $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$
5. $= 3nc_3 + 8T(n/8)$
$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = n c_3 + 2T(n/2)$ for some constant c_3

$T(n) = nc_3 + 2T(n/2)$

$= nc_3 + 2(n/2c_3 + 2T(n/4))$

$= 2nc_3 + 4T(n/4)$

$= 2nc_3 + 4(n/4c_3 + 2T(n/8))$

$= 3nc_3 + 8T(n/8))$

$= 3nc_3 + 8(n/8c_3 + 2T(n/16))$

$= 4nc_3 + 16T(n/16)$
11-6: \(\Theta() \) for Merge Sort

\[
T(0) = c_1 \\
T(1) = c_2 \\
T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3
\]

\[
T(n) = nc_3 + 2T(n/2) \\
= nc_3 + 2(n/2c_3 + 2T(n/4)) \\
= 2nc_3 + 4T(n/4) \\
= 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\
= 3nc_3 + 8T(n/8) \\
= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\
= 4nc_3 + 16T(n/16) \\
= 5nc_3 + 32T(n/32)
\]
11-7: $\Theta()$ for Merge Sort

$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = nc_3 + 2T(n/2)$ for some constant c_3

$T(n) = nc_3 + 2T(n/2)$

$= nc_3 + 2(n/2c_3 + 2T(n/4))$

$= 2nc_3 + 4T(n/4)$

$= 2nc_3 + 4(n/4c_3 + 2T(n/8))$

$= 3nc_3 + 8T(n/8))$

$= 3nc_3 + 8(n/8c_3 + 2T(n/16))$

$= 4nc_3 + 16T(n/16)$

$= 5nc_3 + 32T(n/32)$

$= kn^c_3 + 2^kT(n/2^k)$
11-8: $\Theta()$ for Merge Sort

$$T(0) = c_1$$
$$T(1) = c_2$$
$$T(n) = knc_3 + 2^k T(n/2^k)$$

Pick a value for k such that $n/2^k = 1$:

$$n/2^k = 1$$
$$n = 2^k$$
$$\lg n = k$$

$$T(n) = (\lg n)nc_3 + 2^{\lg n} T(n/2^{\lg n})$$
$$= c_3 n \lg n + nT(n/n)$$
$$= c_3 n \lg n + nT(1)$$
$$= c_3 n \lg n + c_2 n$$
$$\in O(n \lg n)$$
for Merge Sort

\[T(n) \]
11-10: $\Theta()$ for Merge Sort

$c\times n$

$T(n/2)$ $T(n/2)$
11-11: $\Theta()$ for Merge Sort

```
c*n
   /\       /\       /\       /\
c*(n/2)   c*(n/2)   c*(n/2)   c*(n/2)
   /\       /\       /\       /\
T(n/4)   T(n/4)   T(n/4)   T(n/4)
```
11-12: $\Theta()$ for Merge Sort

\[
\begin{align*}
&\text{c*n} \\
&\text{c*(n/2)} \\
&\text{c*(n/4)} \\
&\vdots
\end{align*}
\]
11-13: $\Theta()$ for Merge Sort

\[c^n \]
\[c^{n/2} \]
\[c^{n/4} \]
\[\ldots \]
\[\ldots \]
\[\ldots \]
\[\ldots \]
11-14: $\Theta()$ for Merge Sort

Total time = $c^n \lg n\ \Theta(n \lg n)$
\[T(0) = c_1 \quad \text{for some constant } c_1 \]
\[T(1) = c_2 \quad \text{for some constant } c_2 \]
\[T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3 \]

\[T(n) = aT(n/b) + f(n) \]
\[a = 2, \ b = 2, \ f(n) = n \]
\[n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n) \]

By second case of the Master Method, \(T(n) \in \Theta(n \log n) \)
11-16: Divide & Conquer

Merge Sort:

- Divide the list two parts
 - No work required – just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required – need to merge lists
Divide & Conquer

Quick Sort:

- Divide the list two parts
 - Some work required – Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!
Quick Sort

• Pick a pivot element
• Reorder the list:
 • All elements < pivot
 • Pivot element
 • All elements > pivot
• Recursively sort elements < pivot
• Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6
Basic Idea:

- Swap pivot element out of the way (we’ll swap it back later)
- Maintain two pointers, i and j
 - i points to the beginning of the list
 - j points to the end of the list
- Move i and j in to the middle of the list – ensuring that all elements to the left of i are $<$ the pivot, and all elements to the right of j are greater than the pivot
- Swap pivot element back to middle of list
11-20: Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap A[pivotindex] and A[high]
- Set $i \leftarrow low, j \leftarrow high - 1$
- while $(i \leq j)$
 - swap $A[i]$ and $A[j]$
 - increment i, decrement j
- swap $A[i]$ and $A[pivot]$
Coming up with a recurrence relation for quicksort is harder than mergesort.

How the problem is divided depends upon the data.

Break list into:

- size 0, size $n - 1$
- size 1, size $n - 2$
- ...
- size $\lceil (n - 1)/2 \rceil$, size $\lceil (n - 1)/2 \rceil$
- ...
- size $n - 2$, size 1
- size $n - 1$, size 0
Worst case performance occurs when break list into size $n - 1$ and size 0

$$T(0) = c_1$$

for some constant c_1

$$T(1) = c_2$$

for some constant c_2

$$T(n) = nc_3 + T(n - 1) + T(0)$$

for some constant c_3

$$T(n) = nc_3 + T(n - 1) + T(0)$$

$$= T(n - 1) + nc_3 + c_2$$
Worst case: \(T(n) = T(n - 1) + nc_3 + c_2 \)

\[
T(n) = T(n - 1) + nc_3 + c_2
\]
Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

$T(n)$

$= T(n - 1) + nc_3 + c_2$

$= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2$

$= T(n - 2) + (n + (n - 1))c_3 + 2c_2$
Worst case: \[T(n) = T(n - 1) + nc_3 + c_2 \]

\[
\begin{align*}
T(n) & = T(n - 1) + nc_3 + c_2 \\
& = [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2 \\
& = T(n - 2) + (n + (n - 1))c_3 + 2c_2 \\
& = [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2 \\
& = T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2
\end{align*}
\]
11-26: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

$$T(n)$$
$$= T(n - 1) + nc_3 + c_2$$
$$= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2$$
$$= T(n - 2) + (n + (n - 1))c_3 + 2c_2$$
$$= [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2$$
$$= T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2$$
$$= T(n - 4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2$$
Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

$T(n)$

$= T(n - 1) + nc_3 + c_2$

$= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2$

$= T(n - 2) + (n + (n - 1))c_3 + 2c_2$

$= [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2$

$= T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2$

$= T(n - 4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2$

\ldots

$= T(n - k) + (\sum_{i=0}^{k-1} (n - i)c_3) + kc_2$
Worst case:

\[T(n) = T(n - k) + \left(\sum_{i=0}^{k-1} (n - i)c_3 \right) + kc_2 \]

Set \(k = n \):

\[
egin{align*}
T(n) &= T(n - k) + \left(\sum_{i=0}^{k-1} (n - i)c_3 \right) + kc_2 \\
&= T(n - n) + \left(\sum_{i=0}^{n-1} (n - i)c_3 \right) + kc_2 \\
&= T(0) + \left(\sum_{i=0}^{n-1} (n - i)c_3 \right) + kc_2 \\
&= T(0) + \left(\sum_{i=0}^{n-1} ic_3 \right) + kc_2 \\
&= c_1 + c_3n(n + 1)/2 + kc_2 \\
&\in \Theta(n^2)
\end{align*}
\]
11-29: $\Theta()$ for Quick Sort

$T(n)$
11-30: $\Theta()$ for Quick Sort

$c*n$

$T(n-1)$ $T(0)$
11-31: $\Theta()$ for Quick Sort

![Diagram showing the time complexity of Quick Sort]

- c^n
- $c^{(n-1)}$
- c^2
- $T(n-2)$
- $T(0)$
11-32: $\Theta()$ for Quick Sort

Diagram:

```
  c^n
  / \   \\
c*(n-1)  c2
  |
  |   \
  |    \\
c*(n-2)  c2
  |
  |   \
  |    \\
T(n-3)  T(0)
```
11-33: $\Theta(\cdot)$ for Quick Sort

\[
\begin{align*}
&c^*n \\
&c^*(n-1) \quad c^*n \\
&c^*(n-2) \quad c^*(n-1) + c^*2 \\
&c^*(n-3) \quad c^*(n-2) + c^*2 \\
&\ldots \quad n \text{ levels} \\
&c^*(n-k) \quad c^*(n-3) + c^*2 \\
&c^*(n-k+1) \quad c^*(n-k) + c^*2
\end{align*}
\]
11-34: $\Theta()$ for Quick Sort

Total time = $c^*n^*(n+1)/2 + nc^2$

$\Theta(n^2)$
11-35: $\Theta()$ for Quick Sort

Best case performance occurs when break list into size
$\lfloor (n - 1)/2 \rfloor$ and size $\lceil (n - 1)/2 \rceil$

$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = n c_3 + 2 T(n/2)$ for some constant c_3

This is the same as Merge Sort: $\Theta(n \log n)$
Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called quick?

- Most lists give running time of $\Theta(n \log n)$: The average case running time (assuming all permutations are equally likely) is $\Theta(n \log n)$
 - We could prove this by finding the running time for each permutation of a list of length n, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class
 - Consider what happens when the list is always partitioned into a list of length $n/9$ and a list of length $8n/9$ (recursion tree, on whiteboard)
If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$
 - Average case running time is $\Theta(n \lg n)$
- Constants are very small
 - Constants don’t matter when complexity is different
 - Constants do matter when complexity is the same

What lists will cause Quick Sort to have $\Theta(n^2)$ performance?
Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
 - The list is sorted (or almost sorted)
 - The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?
11-39: Better Partitions

- Pick the middle element as the pivot
 - Sorted and reverse sorted lists give good performance

- Pick a random element as the pivot
 - No single list always gives bad performance

- Pick the median of 3 elements
 - First, Middle, Last
 - 3 Random Elements
11-40: **Improving Quick Sort**

- Insertion Sort runs faster than Quick Sort on small lists
 - Why?
- We can combine Quick Sort & Insertion Sort
 - When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 - When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single call to Insertion Sort
11-41: **Heap Sort**

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 3 1 7 2 5 4
Heap Sort

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at $2i + 1$ and $2i + 2$, and parent is at $(i - 1)/2$ (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)
Heap Sort

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at $2i+1$ and $2i+2$, and parent is at $(i-1)/2$
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4
Building the heap takes time $\Theta(n)$

Each of the n RemoveMax calls takes time $O(lg\ n)$

Total time: $(n \ lg\ n)$ (also $\Theta(n \ lg\ n)$)
Stability

<table>
<thead>
<tr>
<th>Sorting Algorithm</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td></td>
</tr>
<tr>
<td>Selection Sort</td>
<td></td>
</tr>
<tr>
<td>Bubble Sort</td>
<td></td>
</tr>
<tr>
<td>Shell Sort</td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td></td>
</tr>
<tr>
<td>Quick Sort</td>
<td></td>
</tr>
<tr>
<td>Heap Sort</td>
<td></td>
</tr>
</tbody>
</table>
Stability

<table>
<thead>
<tr>
<th>Sorting Algorithm</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>No</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Shell Sort</td>
<td>No</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>No</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>No</td>
</tr>
</tbody>
</table>