Data Structures and Algorithms

CS245-2015S-11

Sorting in $\Theta(n \log n)$

David Galles

Department of Computer Science
University of San Francisco
11-0: Merge Sort – Recursive Sorting

- **Base Case:**
 - A list of length 1 or length 0 is already sorted

- **Recursive Case:**
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7
11-1: Merging

- Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
 - i is index of left hand list
 - j is index of right hand list
 - n is index of temporary list T
- If $A[i] < A[j]$
 - $T[n] = A[i]$, increment n and i
- else
 - $T[n] = A[j]$, increment n and j

Example: 1 2 5 8 and 3 4 6 7
for some constant c_1

for some constant c_2

for some constant c_3
\[T(0) = c_1 \quad \text{for some constant } c_1 \]
\[T(1) = c_2 \quad \text{for some constant } c_2 \]
\[T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3 \]
\[T(n) = nc_3 + 2T(n/2) \]
\[= nc_3 + 2(n/2c_3 + 2T(n/4)) \]
\[= 2nc_3 + 4T(n/4) \]
11-4: \(\Theta() \) for Merge Sort

\[
T(0) = c_1 \quad \text{for some constant } c_1 \\
T(1) = c_2 \quad \text{for some constant } c_2 \\
T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3 \\
T(n) = nc_3 + 2T(n/2) \\
\quad = nc_3 + 2(n/2c_3 + 2T(n/4)) \\
\quad = 2nc_3 + 4T(n/4) \\
\quad = 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\
\quad = 3nc_3 + 8T(n/8))
\]
11-5: \(\Theta() \) for Merge Sort

\[T(0) = c_1 \] for some constant \(c_1 \)
\[T(1) = c_2 \] for some constant \(c_2 \)
\[T(n) = n c_3 + 2T(n/2) \] for some constant \(c_3 \)
\[T(n) = n c_3 + 2T(n/2) \\
= n c_3 + 2(n/2 c_3 + 2T(n/4)) \\
= 2n c_3 + 4T(n/4) \\
= 2n c_3 + 4(n/4 c_3 + 2T(n/8)) \\
= 3n c_3 + 8T(n/8)) \\
= 3n c_3 + 8(n/8 c_3 + 2T(n/16)) \\
= 4n c_3 + 16T(n/16) \]
for Merge Sort

\[T(0) = c_1 \] for some constant \(c_1 \)

\[T(1) = c_2 \] for some constant \(c_2 \)

\[T(n) = nc_3 + 2T(n/2) \] for some constant \(c_3 \)

\[
T(n) = nc_3 + 2T(n/2) \\
= nc_3 + 2(n/2c_3 + 2T(n/4)) \\
= 2nc_3 + 4T(n/4) \\
= 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\
= 3nc_3 + 8T(n/8)) \\
= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\
= 4nc_3 + 16T(n/16) \\
= 5nc_3 + 32T(n/32)
\]
11-7: $\Theta()$ for Merge Sort

\[T(0) = c_1 \quad \text{for some constant } c_1 \]
\[T(1) = c_2 \quad \text{for some constant } c_2 \]
\[T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3 \]
\[T(n) = nc_3 + 2T(n/2) \\
= nc_3 + 2(n/2c_3 + 2T(n/4)) \\
= 2nc_3 + 4T(n/4) \\
= 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\
= 3nc_3 + 8T(n/8)) \\
= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\
= 4nc_3 + 16T(n/16) \\
= 5nc_3 + 32T(n/32) \\
= kn c_3 + 2^k T(n/2^k) \]
11-8: \(\Theta() \) for Merge Sort

\[
T(0) = c_1 \\
T(1) = c_2 \\
T(n) = kn c_3 + 2^k T(n/2^k)
\]

Pick a value for \(k \) such that \(n/2^k = 1 \):

\[
\begin{align*}
n/2^k &= 1 \\
n &= 2^k \\
l \lg n &= k \\
T(n) &= (l \lg n) n c_3 + 2^{l \lg n} T(n/2^{l \lg n}) \\
&= c_3 n l \lg n + n T(n/n) \\
&= c_3 n l \lg n + n T(1) \\
&= c_3 n l \lg n + c_2 n \\
&\in O(n l \lg n)
\end{align*}
\]
Θ() for Merge Sort

T(n)
$\Theta()$ for Merge Sort

\[
c^*n = T(n/2) + T(n/2)
\]
11-11: $\Theta()$ for Merge Sort

\[c^*n \]

\[c^*(n/2) \quad T(n/4) \quad T(n/4) \]

\[c^*(n/2) \quad T(n/4) \quad T(n/4) \]
11-12: $\Theta()$ for Merge Sort

c*n

\[
c^*(n/2) \quad c^*(n/2)
\]

\[
c^*(n/4) \quad c^*(n/4)
\]

\[
c^*(n/4) \quad c^*(n/4)
\]

\[
c^*(n/4) \quad c^*(n/4)
\]
11-13: $\Theta()$ for Merge Sort

$\Theta(n)$ for Merge Sort

- $c \cdot n$
- $c \cdot (n/2)$
- $c \cdot (n/4)$
- $c \cdot (n/4)$
- $c \cdot (n/4)$
- $c \cdot (n/4)$

$\lg n$ levels
11-14: $\Theta()$ for Merge Sort

Total time = $c^n \cdot \lg n = \Theta(n \cdot \lg n)$
For Merge Sort

\[T(0) = c_1 \quad \text{for some constant } c_1 \]
\[T(1) = c_2 \quad \text{for some constant } c_2 \]
\[T(n) = nc_3 + 2T(n/2) \quad \text{for some constant } c_3 \]

\[T(n) = aT(n/b) + f(n) \]
\[a = 2, b = 2, f(n) = n \]
\[n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n) \]

By second case of the Master Method,
\[T(n) \in \Theta(n \lg n) \]
Merge Sort:

- Divide the list two parts
 - No work required – just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required – need to merge lists
Quick Sort:

- Divide the list two parts
 - Some work required – Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!
Quick Sort

- Pick a pivot element
- Reorder the list:
 - All elements < pivot
 - Pivot element
 - All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6
Basic Idea:

- Swap pivot element out of the way (we’ll swap it back later)
- Maintain two pointers, i and j
 - i points to the beginning of the list
 - j points to the end of the list
- Move i and j in to the middle of the list – ensuring that all elements to the left of i are $<$ the pivot, and all elements to the right of j are greater than the pivot
- Swap pivot element back to middle of list
Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap $A[\text{pivot index}]$ and $A[\text{high}]$
- Set $i \leftarrow \text{low}$, $j \leftarrow \text{high}-1$
- while $(i \leq j)$
 - while $A[i] < A[\text{pivot}]$, increment i
 - while $A[j] > A[\text{pivot}]$, decrement i
 - swap $A[i]$ and $A[j]$
 - increment i, decrement j
- swap $A[i]$ and $A[\text{pivot}]$
Coming up with a recurrence relation for quicksort is harder than mergesort.

How the problem is divided depends upon the data.

Break list into:
- size 0, size $n - 1$
- size 1, size $n - 2$
- \ldots
- size $\lceil (n - 1)/2 \rceil$, size $\lceil (n - 1)/2 \rceil$
- \ldots
- size $n - 2$, size 1
- size $n - 1$, size 0
Worst case performance occurs when break list into size $n - 1$ and size 0

\[T(0) = c_1 \text{ for some constant } c_1 \]
\[T(1) = c_2 \text{ for some constant } c_2 \]
\[T(n) = nc_3 + T(n - 1) + T(0) \text{ for some constant } c_3 \]
\[T(n) = nc_3 + T(n - 1) + T(0) \\
= T(n - 1) + nc_3 + c_2 \]
Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

$T(n)$

$= T(n - 1) + nc_3 + c_2$
Worst case: \(T(n) = T(n - 1) + nc_3 + c_2 \)

\[
T(n) \\
= T(n - 1) + nc_3 + c_2 \\
= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2 \\
= T(n - 2) + (n + (n - 1))c_3 + 2c_2
\]
Worst case: \(T(n) = T(n - 1) + nc_3 + c_2 \)

\[
\begin{align*}
T(n) & = T(n - 1) + nc_3 + c_2 \\
& = [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2 \\
& = T(n - 2) + (n + (n - 1))c_3 + 2c_2 \\
& = [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2 \\
& = T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2
\end{align*}
\]
11-26: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

\[
T(n) \\
= T(n - 1) + nc_3 + c_2 \\
= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2 \\
= T(n - 2) + (n + (n - 1))c_3 + 2c_2 \\
= [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2 \\
= T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2 \\
= T(n - 4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2
\]
11-27: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n - 1) + nc_3 + c_2$

\[
T(n) \\
= T(n - 1) + nc_3 + c_2 \\
= [T(n - 2) + (n - 1)c_3 + c_2] + nc_3 + c_2 \\
= T(n - 2) + (n + (n - 1))c_3 + 2c_2 \\
= [T(n - 3) + (n - 2)c_3 + c_2] + (n + (n - 1))c_3 + 2c_2 \\
= T(n - 3) + (n + (n - 1) + (n - 2))c_3 + 3c_2 \\
= T(n - 4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2 \\
\ldots \\
= T(n - k) + \left(\sum_{i=0}^{k-1} (n - i)c_3\right) + kc_2
\]
Worst case:

\[T(n) = T(n - k) + \left(\sum_{i=0}^{k-1} (n - i)c_3 \right) + kc_2 \]

Set \(k = n \):

\[
\begin{align*}
T(n) &= T(n - k) + \left(\sum_{i=0}^{k-1} (n - i)c_3 \right) + kc_2 \\
&= T(n - n) + \left(\sum_{i=0}^{n-1} (n - i)c_3 \right) + kc_2 \\
&= T(0) + \left(\sum_{i=0}^{n-1} (n - i)c_3 \right) + kc_2 \\
&= T(0) + \left(\sum_{i=0}^{n-1} ic_3 \right) + kc_2 \\
&= c_1 + c_3 n(n + 1)/2 + kc_2 \\
&\in \Theta(n^2)
\end{align*}
\]
11-29: \(\Theta() \) for Quick Sort

\[T(n) \]
11-30: $\Theta(\cdot)$ for Quick Sort

$$c^*n$$

$$T(n-1) \quad T(0)$$
for Quick Sort

\[T(n) \leq c*n + c*(n-1) + c^2 \]

\[T(n-2) \]

\[T(0) \]
11-32: \(\Theta() \) for Quick Sort

\[
c^n \\
c^{n-1} + c^2 \\
c^{n-2} + c^2 \\
T(n-3) + T(0)
\]
11-33: $\Theta()$ for Quick Sort

c^*n

$c^*(n-1)$

$c^*(n-2)$

$c^*(n-3)$

$c^*(n-k)$

n levels

$c^*(n-1) + c^2$

$c^*(n-2) + c^2$

$c^*(n-3) + c^2$

$c^*(n-k) + c^2$
11-34: $\Theta()$ for Quick Sort

Total time = $c*n*(n+1)/2 + nc2$

$\Theta(n^2)$
Best case performance occurs when break list into size $\lfloor (n - 1)/2 \rfloor$ and size $\lceil (n - 1)/2 \rceil$

$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = nc_3 + 2T(n/2)$ for some constant c_3

This is the same as Merge Sort: $\Theta(n \log n)$
If Quicksort is $\Theta(n^2)$ on some lists, why is it called quick?

- Most lists give running time of $\Theta(n \lg n)$: The average case running time (assuming all permutations are equally likely) is $\Theta(n \lg n)$
 - We could prove this by finding the running time for each permutation of a list of length n, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class
 - Consider what happens when the list is always partitioned into a list of length $n/9$ and a list of length $8n/9$ (recursion tree, on whiteboard)
11-37: *Quick Sort?*

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$
 - Average case running time is $\Theta(n \lg n)$
- Constants are very small
 - Constants don’t matter when complexity is different
 - Constants *do* matter when complexity is the same

What lists will cause Quick Sort to have $\Theta(n^2)$ performance?
Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
 - The list is sorted (or almost sorted)
 - The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?
Better Partitions

- Pick the middle element as the pivot
 - Sorted and reverse sorted lists give good performance
- Pick a random element as the pivot
 - No single list always gives bad performance
- Pick the median of 3 elements
 - First, Middle, Last
 - 3 Random Elements
Insertion Sort runs faster than Quick Sort on small lists
 Why?
We can combine Quick Sort & Insertion Sort
 When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single call to Insertion Sort
11-41: Heap Sort

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 3 1 7 2 5 4
This requires $\Theta(n)$ extra space

We can modify heapsort so that it does not use extra space

Build a heap out of the original array, with two differences:

- Consider element 0 to be the root of the tree
 - for element i, children are at $2i + 1$ and $2i + 2$, and parent is at $(i - 1)/2$
 - (examples)
- Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)
11-43: **Heap Sort**

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element \(i \), children are at \(2i + 1 \) and \(2i+2 \), and parent is at \((i - 1)/2 \)
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \(\geq \) element stored in that subtree (instead of \(\leq \), as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4
for Heap Sort

- Building the heap takes time $\Theta(n)$
- Each of the n RemoveMax calls takes time $O(lg\ n)$
- Total time: $(n \ lg\ n)$ (also $\Theta(n \ lg\ n)$)
<table>
<thead>
<tr>
<th>Sorting Algorithm</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td></td>
</tr>
<tr>
<td>Selection Sort</td>
<td></td>
</tr>
<tr>
<td>Bubble Sort</td>
<td></td>
</tr>
<tr>
<td>Shell Sort</td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td></td>
</tr>
<tr>
<td>Quick Sort</td>
<td></td>
</tr>
<tr>
<td>Heap Sort</td>
<td></td>
</tr>
<tr>
<td>Sorting Algorithm</td>
<td>Stable?</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>No</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Shell Sort</td>
<td>No</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>No</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>No</td>
</tr>
</tbody>
</table>