(CS245-2017S-11

Sorting in O(nlgn)

11-0: Merge Sort — Recursive Sorting

e Base Case:

e A list of length 1 or length 0 is already sorted

e Recursive Case:

e Split the list in half
e Recursively sort two halves

e Merge sorted halves together

Example: 51826437 11-1: Merging

e Merge lists into a new temporary list, T’
e Maintain three pointers (indices) 7, j, and n

e j is index of left hand list
e j is index of right hand list

e 1 is index of temporary list T’
o If Afi] < A[j]

e T'[n] = A[i], increment n and i
o clse

e T[n] = A[j], increment n and j

Example: 1258 and 3467
T(O) =C1
11-2: ©() for Merge Sort T'(1) = ¢
T(n) =ncs + 2T (n/2)
T(n) =ncs+2T(n/2)
T(O) =C1
11-3: ©() for Merge Sort T'(1) = ¢,
T(n) = nes + 2T (n/2)
T(n) =mnc3+2T(n/2)

= ncg + 2(n/2c3 + 2T (n/4))
= 2ncs + 4T (n/4)
T(O) = C1
11-4: ©() for Merge Sort T'(1) = ¢
T(n) = nes + 27 (n/2)
= ncz +27T(n/2)
= ncg + 2(n/2c3 + 2T (n/4))
= 2nc3 + 4T (n/4)
= 2nc3 + 4(n/4cz3 + 2T(n/8))
= 3ncs + 8T(n/8))
T(O) =C1
T(l) = C2
T(n) = nes + 2T (n/2)

T(n)

11-5: O() for Merge Sort

for some constant ¢y
for some constant cs
for some constant c3

for some constant ¢;
for some constant co
for some constant c3

for some constant c¢;
for some constant cs
for some constant c3

for some constant c¢;
for some constant co
for some constant c3

CS245-2017S-11 Sorting in O(nlgn)

T(n) neg 4+ 27(n/2)

nes + 2(n/2cs + 2T (n/4))
= 2ncs + 4T (n/4)

= 2nc3 + 4(n/4c3 + 2T(n/8))
= 3ncz +8T'(n/8))

= 3ncs + 8(n/8¢cz + 2T (n/16))
= 4dncs + 16T (n/16)

T(0)=c; for some constant ¢;
11-6: ©() for Merge Sort T(1) = ¢, for some constant co
T(n) =ncs +2T(n/2) for some constant c3

T(n) nes + 2T (n/2)

nes +2(n/2cs + 2T (n/4))
= 2nc3 + 4T (n/4)

= 2ncs + 4(n/4ez + 2T(n/8))
= 3ncs + 81 (n/8))

= 3ncs + 8(n/8cs + 2T (n/16))
= 4ncs + 16T (n/16)

= 5ncs + 327 (n/32)

T(0)=c1 for some constant ¢;
11-7: ©() for Merge Sort T'(1) = ¢, for some constant ¢y
T(n) = nez + 2T (n/2) for some constant c3

T(n) =ncs+2T(n/2)
nes +2(n/2cs + 2T (n/4))
2ncs + 4T (n/4)
= 2nc3 + 4(n/4ez + 2T(n/8))
= 3ncs + 8T(n/8))
= 3ncs + 8(n/8¢cz + 2T (n/16))
= 4ncs + 16T(n/16)
= bnes + 327(n/32)
= kncs + 28T (n/2F)
11-8: O() for Merge Sort
T(O) =C
T(l) = C2
T(n) = kneg + 28T (n/2%)
Pick a value for k such that n/2F = 1:

n/2k = 1
n = 2k
lgen = k
T(n) = (lgn)ncs+2'87T(n/2187)
= csnlgn+nT(n/n)
= csnlgn+nT(1) 11-9: ©() for Merge Sort
= csnlgn+ can
O(nlgn)

T(n)
11-10: ©() for Merge Sort

CS245-2017S-11 Sorting in O(nlgn)

/n\
T(n/ 2) T(n/ 2)
11-11: ©() for Merge Sort
c*n
7(n< c*(n/ 2)
T(n/ 4) T(n/ 4) T(n/ 4) T(n/ 4)
11-12: ©() for Merge Sort
c*n c*n
c*(n/2) c*(n/ 2) c*n

c*(%&(n/@ c*(n/4) c\(vl4) c*n
/NN

11-13: ©() for Merge Sort

c*n c*n
c*(n/2) c*(nl/2) c*n
lgn
levels
c*(n/4) c*(n/4) c*(n/4) c*(n/4) c*n

NN N

11-14: ©() for Merge Sort

CS245-2017S-11 Sorting in O(nlgn)

A C*n
c*(n/2) c*(nl/2) c*n
lgn
levels
c’}n/ 4) c’}n/ 4) c*(n/ 4) c*}n/ 4) c*n
c*n

Tota time= c*n 1 g n

O(n lg n)
11-15: ©() for Merge Sort
T(0) =1 for some constant ¢;
T(1) =co for some constant co
T(n) =necs + 2T (n/2) for some constant c3

T(n) = aT(n/b) + f(n)
a=2b=2,f(n)=n
nlogsa = ploga2 — p ¢ O(n)
By second case of the Master Method, T'(n) € O(nlgn)
11-16: Divide & Conquer

Merge Sort:
e Divide the list two parts
e No work required — just calculate midpoint
e Recursively sort two parts
e Combine sorted lists into one list

e Some work required — need to merge lists

11-17: Divide & Conquer
Quick Sort:

e Divide the list two parts

e Some work required — Small elements in left sublist, large elements in right sublist
e Recursively sort two parts
e Combine sorted lists into one list

e No work required!

11-18: Quick Sort

e Pick a pivot element

CS245-2017S-11 Sorting in O(nlgn) 5

e Reorder the list:

e All elements < pivot
e Pivot element

e All elements > pivot
e Recursively sort elements < pivot

e Recursively sort elements > pivot

Example: 3728146
11-19: Quick Sort - Partitioning
Basic Idea:

e Swap pivot elememt out of the way (we’ll swap it back later)
e Maintain two pointers, ¢ and j

e ¢ points to the beginning of the list

e j points to the end of the list

e Move ¢ and j in to the middle of the list — ensuring that all elements to the left of ¢ are < the pivot, and all
elememnts to the right of j are greater than the pivot

e Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning
Pseudocode:

e Pick a pivot index

e Swap A[pivotindex] and Afhigh]
e Seti < low, j < high—1

e while (i <=j)

e while A[i] < Alpivot], increment i
e while A[j] > A[pivot], decrement i
e swap A[i] and A[j]

e increment ¢, decrement j
e swap A[i] and A[pivot]
11-21: ©() for Quick Sort

e Coming up with a recurrence relation for quicksort is harder than mergesort

e How the problem is divided depends upon the data

CS245-2017S-11 Sorting in O(nlgn)

e Break list into:
size 0, sizen — 1
size 1, sizen — 2
size [(n —1)/2],size [(n — 1)/2]
size n — 2, size 1
sizen — 1, size 0

11-22: ©() for Quick Sort

Worst case performance occurs when break list into size n — 1 and size 0

T(0) =1 for some constant ¢;
T(1) = co for some constant ¢y
T(n)=ncg+T(n—1)+T(0) forsome constant c3
T(n) =mncs+T(n—1)+T(0)

=T(n—-1)+ncz+c

T(n

)
T(n—1)+ncs+ co
11-24: ©() for Quick Sort Worst case: T'(n) = T(n — 1) 4+ ncg + co
)
T(

T(n

=T(n—-1)+ncs+c

=[T(n—2)+(n—1)cz+ ca] + nes + c2
=T(n—=2)+(n+(n—1))c3 +2c

11-25: ©() for Quick Sort Worst case: T'(n) = T'(n — 1) + ncs + ¢2

T(n)
T(n—1)4ncs+co

=[T(n—2)+(n—1)cz+ ca] + nes + co
T(n—2)+(n+(n—1))cz+2c
=[T(n—3)4+(n—2)cz+col +(n+ (n—1))cs + 2¢2
n—3)+m+n—1)+ (n—2))cs + 3¢

for Quick Sort Worst case: T'(n) = T'(n — 1) + ncs + co

I
’ﬂ

11-26: O(

=]
}ﬂs S~—

3

—1)+nes+co

(n—2)4 (n—1)cz + co] + nes + ¢o
mn=2)+(n+(n—1))cs + 2¢2

3)+ (n—2)es+ca] + (n+ (n—1))cs + 2¢2

I+ n+(n—1)+(n—2))cz + 3c2
n—4)+n+n—-1)+(1n—-2)+ (n—3))cz + 4c2

for Quick Sort Worst case: T'(n) = T'(n — 1) + ncs + ¢2

(I
535
S
|

I
o33

3
|

11-27: ©

—~

11-23: ©() for Quick Sort Worst case: T'(n)

=T(n—-1)+ncs+c

CS245-2017S-11 Sorting in O(nlgn)

o

n)

T(n—1)+ncs+ co

[T(n—2)4 (n—1)cs + co] +nes + co
Tn—2)4+(n+ (n—1))cs + 2¢o

[T(n—3)4+ (n—2)cg+ca] + (n+ (n—1))cs + 2¢2
Tn—=3)+(n+Mn—-1)4+(n—2))cs + 3c2
Tn—4)+n+(n—-1)4+(n—2)+ (n—3))c3 + 4dcz

T(n— k) + (S (0 — i)cs) + ez
11-28: ©() for Quick Sort Worst case:

n —
n —

T(n) =T(n—k)+ (X2 (n —i)es) + kes
Set k = n:

T(n) n—k)+ (Zi:ol (n—1i)cs) + kea
n—n) + (370 (n —i)es) + ke
(i (n—i)es) + ke
0) + (X7, ics) + keo
=c +cesn(n+1)/2 4 keo
€ 0(n?)
11-29: ©() for Quick Sort
T(n)
11-30: ©() for Quick Sort
c*n

T(n-1) T(0)
11-31: ©() for Quick Sort
c*n

c*(n-1) c2

T(n- 2)\ 0)

11-32: ©() for Quick Sort

c*n
c* (- 1) c2
c*(n-2) c2
T(n-3) T(0)

11-33: ©() for Quick Sort

CS245-2017S-11 Sorting in O(nlgn) 8

/Cn\ o
c* (- 1) c2 cr(n-1)+c2)
levels
c*(n-2) c2 c*(n-2)+c2
c*(n-é;\\\\\\\\bz c*(n-3)+c2
c*(n-k)+c2
11-34: ©() for Quick Sort ::
C*n C*n
c*(n-1) c2 cr(n-1)+c2)
levels
c*(n-2) c2 c*(n-2)+c2
c*(n-;;\\\\\\\\tz c*(n-3)+c2
c*(n-k)+c2

Tota time= c*n*(n+1)/2 + nc2
o(nr)

11-35: ©() for Quick Sort
Best case performance occurs when break list into size | (n — 1)/2] and size [(n — 1)/2]
T(0) =1 for some constant ¢;
T(1) = co for some constant ¢y
T(n) =necs + 2T (n/2) for some constant c3

This is the same as Merge Sort: ©(nlgn)
11-36: Quick Sort?
If Quicksort is ©(n?) on some lists, why is it called quick?

e Most lists give running time of ©(n lgn): The average case running time (assuming all permutations are equall
likely) is ©(nlgn)
e We could prove this by finding the running time for each permutation of a list of length n, and averaging
them
e Math required to do this is a little beyond the prerequisites for this class

(CS245-2017S-11 Sorting in O(nlgn) 9

e Consider what happens when the list is always partitioned into a list of length n/9 and a list of lenth 8n /9
(recursion tree, on whiteboard)

e Consider what happenswhen the list is always partitioned into a list of length n/k and a list of length
(k — 1)n/k, for any k

11-37: Quick Sort?
If Quicksort is ©(n?) on some lists, why is it called quick?

e Most lists give running time of O(nlgn)
e Average case running time is ©(nlgn)
e Constants are very small

e Constants don’t matter when complexity is different

o Constants do matter when complexity is the same

What lists will cause Quick Sort to have ©(n?) performance?
11-38: Quick Sort - Worst Case

e Quick Sort has worst-case performance when:

e The list is sorted (or almost sorted)

e The list is inverse sorted (or almost inverse sorted)
e Many lists we want to sort are almost sorted!
e How can we fix Quick Sort?
11-39: Better Partitions
e Pick the middle element as the pivot
e Sorted and reverse sorted lists give good performance
e Pick a random element as the pivot
e No single list always gives bad performance
o Pick the median of 3 elements

e First, Middle, Last

e 3 Random Elements

11-40: Improving Quick Sort

e Insertion Sort runs faster than Quick Sort on small lists
e Why?
e We can combine Quick Sort & Insertion Sort

e When lists get small, run Insertion Sort instead of a recursive call to Quick Sort

e When lists get small, stop! After call to Quick Sort, list will be almost sorted — finish the job with a single
call to Insertion Sort

CS245-2017S-11 Sorting in O(nlgn) 10

11-41: Heap Sort
e Copy the data into a new array (except leave out element at index 0)

Build a heap out of the new array

Repeat:

e Remove the smallest element from the heap, add it to the original array

Until all elements have been removed from the heap

The original array is now sorted

Example: 317254
11-42: Heap Sort

e This requires ©(n) extra space
e We can modify heapsort so that it does not use extra space
e Build a heap out of the original array, with two differences:

e Consider element O to be the root of the tree
o for element i, children are at 2*i +1 and 2*i+2, and parent is at (i — 1)/2
e (examples)
e Max-heap instead of a standard min-heap
e For each subtree, element stored at root > element stored in that subtree (instead of <, as in a standard
heap)

11-43: Heap Sort

e Build a heap out of the original array, with two differences:

e Consider element O to be the root of the tree
o for element i, children are at 2*i +1 and 2*i+2, and parent is at (i — 1)/2
e (examples)
e Max-heap instead of a standard min-heap
e For each subtree, element stored at root > element stored in that subtree (instead of <, as in a standard
heap)

e Repeatedly remove the largest element, and insert it in the back of the heap

Example: 317254
11-44: ©() for Heap Sort

e Building the heap takes time O (n)
e Each of the n RemoveMax calls takes time O(lgn)

e Total time: D (nlgn) (also O(nlgn))

(CS245-2017S-11

Sorting in O(nlgn)

11

11-45: Stability

Sorting Algorithm | Stable? |

Insertion Sort

Selection Sort

Bubble Sort
Shell Sort
Merge Sort
Quick Sort
Heap Sort

11-46: Stability

| Sorting Algorithm | Stable? |

Insertion Sort Yes
Selection Sort No
Bubble Sort Yes
Shell Sort No
Merge Sort Yes
Quick Sort No
Heap Sort No

