11-0: **Merge Sort – Recursive Sorting**

- **Base Case:**
 - A list of length 1 or length 0 is already sorted

- **Recursive Case:**
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7

11-1: **Merging**

- Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
 - i is index of left hand list
 - j is index of right hand list
 - n is index of temporary list T
- If $A[i] < A[j]$
 - $T[n] = A[i]$, increment n and i
- else
 - $T[n] = A[j]$, increment n and j

Example: 1 2 5 8 and 3 4 6 7

11-2: $\Theta()$ for Merge Sort

<table>
<thead>
<tr>
<th>$T(0)$</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(1)$</td>
<td>c_2 for some constant c_2</td>
</tr>
<tr>
<td>$T(n)$</td>
<td>$n c_3 + 2 T(n/2)$ for some constant c_3</td>
</tr>
</tbody>
</table>

11-3: $\Theta()$ for Merge Sort

<table>
<thead>
<tr>
<th>$T(0)$</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(1)$</td>
<td>c_2 for some constant c_2</td>
</tr>
<tr>
<td>$T(n)$</td>
<td>$n c_3 + 2 T(n/2)$ for some constant c_3</td>
</tr>
</tbody>
</table>

11-4: $\Theta()$ for Merge Sort

<table>
<thead>
<tr>
<th>$T(0)$</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(1)$</td>
<td>c_2 for some constant c_2</td>
</tr>
<tr>
<td>$T(n)$</td>
<td>$n c_3 + 2 T(n/2)$ for some constant c_3</td>
</tr>
</tbody>
</table>

11-5: $\Theta()$ for Merge Sort

<table>
<thead>
<tr>
<th>$T(0)$</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(1)$</td>
<td>c_2 for some constant c_2</td>
</tr>
<tr>
<td>$T(n)$</td>
<td>$n c_3 + 2 T(n/2)$ for some constant c_3</td>
</tr>
</tbody>
</table>
\[
T(n) = nc_3 + 2T(n/2)
= nc_3 + 2(n/2c_3 + 2T(n/4))
= 2nc_3 + 4T(n/4)
= 2nc_3 + 4(n/4c_3 + 2T(n/8))
= 3nc_3 + 8T(n/8))
= 3nc_3 + 8(n/8c_3 + 2T(n/16))
= 4nc_3 + 16T(n/16)
\]

for some constant \(c_1\)

11-6: \(\Theta()\) for Merge Sort

\[
T(0) = c_1
\]

for some constant \(c_2\)

\[
T(n) = nc_3 + 2T(n/2)
\]

for some constant \(c_3\)

11-7: \(\Theta()\) for Merge Sort

\[
T(0) = c_1
\]

for some constant \(c_2\)

\[
T(n) = nc_3 + 2T(n/2)
\]

for some constant \(c_3\)

11-8: \(\Theta()\) for Merge Sort

\[
T(0) = c_1
\]

\[
T(1) = c_2
\]

\[
T(n) = knC_3 + 2^kT(n/2^k)
\]

Pick a value for \(k\) such that \(n/2^k = 1\):

\[
\begin{align*}
n/2^k &= 1 \\
n &= 2^k \\
lgn &= k \\
T(n) &= (\log n)nc_3 + 2^{\log n}T(n/2^{\log n}) \\
&= c_3n\log n + nT(n/n) \\
&= c_3n\log n + nT(1) \\
&= c_3n\log n + c_2n \\
&\in O(n\log n)
\end{align*}
\]

11-9: \(\Theta()\) for Merge Sort

\[
T(n)
\]

11-10: \(\Theta()\) for Merge Sort
CS245-2017S-11 Sorting in $\Theta(n \log n)$

11-11: $\Theta()$ for Merge Sort

11-12: $\Theta()$ for Merge Sort

11-13: $\Theta()$ for Merge Sort

11-14: $\Theta()$ for Merge Sort
11-15: Θ() for Merge Sort

\[T(0) = c_1 \] for some constant \(c_1 \)
\[T(1) = c_2 \] for some constant \(c_2 \)
\[T(n) = nc_3 + 2T(n/2) \] for some constant \(c_3 \)

\[T(n) = aT(n/b) + f(n) \]
\(a = 2, b = 2, f(n) = n \)
\[n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n) \]

By second case of the Master Method, \(T(n) \in \Theta(n \lg n) \)

11-16: Divide & Conquer

Merge Sort:

- Divide the list two parts
 - No work required – just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required – need to merge lists

11-17: Divide & Conquer

Quick Sort:

- Divide the list two parts
 - Some work required – Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!

11-18: Quick Sort

- Pick a pivot element
• Reorder the list:
 • All elements < pivot
 • Pivot element
 • All elements > pivot
• Recursively sort elements < pivot
• Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6

11-19: Quick Sort - Partitioning
Basic Idea:
• Swap pivot element out of the way (we’ll swap it back later)
• Maintain two pointers, i and j
 • i points to the beginning of the list
 • j points to the end of the list
• Move i and j in to the middle of the list – ensuring that all elements to the left of i are < the pivot, and all elements to the right of j are greater than the pivot
• Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning
Pseudocode:
• Pick a pivot index
• Swap A[pivot_index] and A[high]
• Set i ← low, j ← high - 1
• while (i <= j)
 • while A[i] < A[pivot], increment i
 • while A[j] > A[pivot], decrement i
 • swap A[i] and A[j]
 • increment i, decrement j
• swap A[i] and A[pivot]

11-21: \(\Theta(n \lg n) \) for Quick Sort
• Coming up with a recurrence relation for quicksort is harder than mergesort
• How the problem is divided depends upon the data
• Break list into:

 size 0, size \(n - 1 \)
 size 1, size \(n - 2 \)

 \(\ldots \)
 size \(\lfloor (n - 1)/2 \rfloor \), size \(\lfloor (n - 1)/2 \rfloor \)

 \(\ldots \)
 size \(n - 2 \), size 1
 size \(n - 1 \), size 0

11-22: \(\Theta() \) for Quick Sort

Worst case performance occurs when break list into size \(n - 1 \) and size 0

\[
T(0) = c_1 \\
T(1) = c_2 \\
T(n) = nc_3 + T(n-1) + T(0) \quad \text{for some constant } c_3 \\
T(n) = nc_3 + T(n-1) + T(0) \\
= T(n-1) + nc_3 + c_2
\]

11-23: \(\Theta() \) for Quick Sort
Worst case: \(T(n) = T(n-1) + nc_3 + c_2 \)

11-24: \(\Theta() \) for Quick Sort
Worst case: \(T(n) = T(n-1) + nc_3 + c_2 \)

\[
T(n) \\
= T(n-1) + nc_3 + c_2 \\
= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\
= T(n-2) + (n + (n - 1))c_3 + 2c_2 \\
= [T(n-3) + (n-2)c_3 + c_2 + (n + (n - 1))c_3 + 2c_2] + (n + (n - 1))c_3 + 3c_2 \\
= T(n-3) + (n + (n - 1) + (n - 2))c_3 + 3c_2
\]

11-25: \(\Theta() \) for Quick Sort
Worst case: \(T(n) = T(n-1) + nc_3 + c_2 \)

\[
T(n) \\
= T(n-1) + nc_3 + c_2 \\
= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\
= T(n-2) + (n + (n - 1))c_3 + 2c_2 \\
= [T(n-3) + (n-2)c_3 + c_2 + (n + (n - 1))c_3 + 2c_2] + (n + (n - 1))c_3 + 3c_2 \\
= T(n-3) + (n + (n - 1) + (n - 2))c_3 + 3c_2 \\
= T(n-4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2
\]

11-26: \(\Theta() \) for Quick Sort
Worst case: \(T(n) = T(n-1) + nc_3 + c_2 \)

\[
T(n) \\
= T(n-1) + nc_3 + c_2 \\
= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\
= T(n-2) + (n + (n - 1))c_3 + 2c_2 \\
= [T(n-3) + (n-2)c_3 + c_2 + (n + (n - 1))c_3 + 2c_2] + (n + (n - 1))c_3 + 3c_2 \\
= T(n-3) + (n + (n - 1) + (n - 2))c_3 + 3c_2 \\
= T(n-4) + (n + (n - 1) + (n - 2) + (n - 3))c_3 + 4c_2
\]

11-27: \(\Theta() \) for Quick Sort
Worst case: \(T(n) = T(n-1) + nc_3 + c_2 \)
\[T(n) \\
= T(n-1) + nc_3 + c_2 \\
= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2 \\
= T(n-2) + (n + (n-1))c_3 + 2c_2 \\
= [T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2 \\
= T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2 \\
= T(n-4) + (n + (n-1) + (n-2) + (n-3))c_3 + 4c_2 \\
\ldots \\
= T(n-k) + (\sum_{i=0}^{k-1} (n-i)c_3) + kc_2 \]

11-28: \(\Theta() \) for Quick Sort \(\) Worst case:

\[T(n) = T(n-k) + (\sum_{i=0}^{k-1} (n-i)c_3) + kc_2 \]

Set \(k = n \):

\[T(n) = T(n-n) + (\sum_{i=0}^{n-1} (n-i)c_3) + kc_2 \]

\[= T(0) + (\sum_{i=0}^{n-1} ic_3) + kc_2 \]

\[= c_1 + c_3n(n+1)/2 + kc_2 \]

\(\in \Theta(n^2) \)
11-34: $\Theta()$ for Quick Sort

Total time = $c^*n^*(n+1)/2 + nc^2$

11-35: $\Theta()$ for Quick Sort

Best case performance occurs when break list into size $\lfloor (n - 1)/2 \rfloor$ and size $\lceil (n - 1)/2 \rceil$

$T(0) = c_1$ for some constant c_1

$T(1) = c_2$ for some constant c_2

$T(n) = nc_3 + 2T(n/2)$ for some constant c_3

This is the same as Merge Sort: $\Theta(n \lg n)$

11-36: Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called quick?

- Most lists give running time of $\Theta(n \lg n)$: The average case running time (assuming all permutations are equally likely) is $\Theta(n \lg n)$
 - We could prove this by finding the running time for each permutation of a list of length n, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class
• Consider what happens when the list is always partitioned into a list of length \(n/9\) and a list of length \(8n/9\) (recursion tree, on whiteboard)
• Consider what happens when the list is always partitioned into a list of length \(n/k\) and a list of length \((k-1)n/k\), for any \(k\)

11-37: *Quick Sort?*
If Quicksort is \(\Theta(n^2)\) on some lists, why is it called *quick*?
• Most lists give running time of \(\Theta(n \lg n)\)
 • Average case running time is \(\Theta(n \lg n)\)
• Constants are very small
 • Constants don’t matter when complexity is different
 • Constants *do* matter when complexity is the same

What lists will cause Quick Sort to have \(\Theta(n^2)\) performance?

11-38: *Quick Sort - Worst Case*
• Quick Sort has worst-case performance when:
 • The list is sorted (or almost sorted)
 • The list is inverse sorted (or almost inverse sorted)
• Many lists we want to sort are almost sorted!
• How can we fix Quick Sort?

11-39: *Better Partitions*
• Pick the middle element as the pivot
 • Sorted and reverse sorted lists give good performance
• Pick a random element as the pivot
 • No single list always gives bad performance
• Pick the median of 3 elements
 • First, Middle, Last
 • 3 Random Elements

11-40: *Improving Quick Sort*
• Insertion Sort runs faster than Quick Sort on small lists
 • Why?
• We can combine Quick Sort & Insertion Sort
 • When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 • When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single call to Insertion Sort
11-41: **Heap Sort**

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 3 1 7 2 5 4

11-42: **Heap Sort**

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at $2*i + 1$ and $2*i+2$, and parent is at $(i−1)/2$
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)

11-43: **Heap Sort**

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at $2*i + 1$ and $2*i+2$, and parent is at $(i−1)/2$
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)
 - Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4

11-44: $\Theta()$ for Heap Sort

- Building the heap takes time $\Theta(n)$
- Each of the n RemoveMax calls takes time $O(lg n)$
- Total time: $O(n lg n)$ (also $\Theta(n lg n))$
Stability

<table>
<thead>
<tr>
<th>Sorting Algorithm</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td></td>
</tr>
<tr>
<td>Selection Sort</td>
<td></td>
</tr>
<tr>
<td>Bubble Sort</td>
<td></td>
</tr>
<tr>
<td>Shell Sort</td>
<td></td>
</tr>
<tr>
<td>Merge Sort</td>
<td></td>
</tr>
<tr>
<td>Quick Sort</td>
<td></td>
</tr>
<tr>
<td>Heap Sort</td>
<td></td>
</tr>
</tbody>
</table>

Stability

<table>
<thead>
<tr>
<th>Sorting Algorithm</th>
<th>Stable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Selection Sort</td>
<td>No</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Shell Sort</td>
<td>No</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>Yes</td>
</tr>
<tr>
<td>Quick Sort</td>
<td>No</td>
</tr>
<tr>
<td>Heap Sort</td>
<td>No</td>
</tr>
</tbody>
</table>