CS245-2017S-12 Non-Comparison Sorts 1

12-0: Comparison Sorting

e Comparison sorts work by comparing elements

e Can only compare 2 elements at a time

e Check for <, >, =.
o All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts

o If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: Decision Trees Insertion Sort on list {a, b, c}
a<b<c b<cx<a
a<c<b c<a<b
b<a<c c<b<a

a<b b<a
a<bh<c b<a<c
a<c<b b<c<a
c<a<b c<b<a
b<c c<b a<c c<a
a<b<c a<c<b b<a<c b<c<a
c<a<b c<b<a
y ya b</c/ \c<b
a<c<b c<a<b b<c<a c<b<a

12-2: Decision Trees

e Every comparison sorting algorithm has a decision tree

e What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the
algorithm?

12-3: Decision Trees

e Every comparison sorting algorithm has a decision tree

e What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the
algorithm?

o (The depth of the shallowest leaf) + 1

e What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for
the algorithm?

12-4: Decision Trees

e Every comparison sorting algorithm has a decision tree

e What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the
algorithm?

e (The depth of the shallowest leaf) + 1

CS245-2017S-12 Non-Comparison Sorts 2

e What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for
the algorithm?

e The height of the tree — (depth of the deepest leaf) + 1
12-5: Decision Trees
e What is the largest number of nodes for a tree of depth d?
12-6: Decision Trees
e What is the largest number of nodes for a tree of depth d?
o 2¢
e What is the minimum height, for a tree that has n leaves?

12-7: Decision Trees

e What is the largest number of nodes for a tree of depth d?
o 2
e What is the minimum height, for a tree that has n leaves?
e lgn
e How many leaves are there in a decision tree for sorting n elements?

12-8: Decision Trees

e What is the largest number of nodes for a tree of depth d?
o 2¢
e What is the minimum height, for a tree that has n leaves?
e lgn
e How many leaves are there in a decision tree for sorting n elements?
o n!
e What is the minimum height, for a decision tree for sorting n elements?

12-9: Decision Trees

e What is the largest number of nodes for a tree of depth d?
o 24

e What is the minimum height, for a tree that has n leaves?
e lgn

e How many leaves are there in a decision tree for sorting n elements?
o n!

e What is the minimum height, for a decision tree for sorting n elements?

CS245-2017S-12 Non-Comparison Sorts 3

o Ign!

12-10: Ig(n!) € Q(nlgn)

lgin!) = lglnx(n—1)x(n—2)x...%2x1)
= (Ign)+Ign—1))+ (Ig(n—2)) +...
+(g2) + (Ig1)

> (Ign)+ (Ign—1))+ ...+ (Ig(n/2))
n/2 terms

> (Ign/2)+ (Ig(n/2)) + ... +1g(n/2)
n/2 terms

= (n/2)1g(n/2)

€ Qnlgn)

12-11: Sorting Lower Bound

e All comparison sorting algorithms can be represented by a decision tree with n! leaves

e Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height
of the tree

e A decision tree with n! leaves must have a height of at least n1gn

e All comparison sorting algorithms have worst-case running time Q(n lgn)

12-12: Counting Sort

e Sorting a list of n integers

e We know all integers are in the range 0...m

e We can potentially sort the integers faster than nlgn
e Keep track of a “Counter Array” C"

e Ci] = # of times value ¢ appears in the list

Example: 3135216781

1 2 3 4 5 6 7 8 9

12-13: Counting Sort Example

3135216781

ojojo0o;j0j0}]0]0|0]0O0]O
o 1 2 3 4 5 6 7 8 9

(CS245-2017S-12

Non-Comparison Sorts

12-14: Counting Sort Example

135216781
O] 0 0|1 O[0]O0
0 1 2 3 6 7 8
12-15: Counting Sort Example
35216781
O/ 1, 0|1 O[0]| O
0 1 2 3 6 7 8
12-16: Counting Sort Example
5216781
O] 1,0 2 O[0]O0
0 1 2 3 6 7 8
12-17: Counting Sort Example
216781
O] 10| 2 O[0]| O
0 1 2 3 6 7 8
12-18: Counting Sort Example
16781
O 11| 2 O[0]| O
0 1 2 3 6 7 8
12-19: Counting Sort Example
6781
O] 21| 2 O[0]| O
0 1 2 3 6 7 8

12-20: Counting Sort Example

CS245-2017S-12 Non-Comparison Sorts

781

0|21 (2]0]1[1,0]0

0 1 2 3 4 5 6 7 8
12-21: Counting Sort Example

81

o|j2}1(2]0]1[1,1|0

0 1 2 3 4 5 6 7 8
12-22: Counting Sort Example

1

oj2}1(2|]0]11|1)|1

0 1 2 3 4
12-23: Counting Sort Example

o|3}/]1(2|]0]1|1|1)|1

0 1 2 3 4
12-24: Counting Sort Example

o|3}/]1(2|]0]1|1|1)|1

0 1 2 3 4

1112335678 12-25: O() of Counting Sort

e What its the running time of Counting Sort?

o If the list has n elements, all of which are in the range 0 . . . m:

12-26: ©() of Counting Sort

e What its the running time of Counting Sort?
o If the list has n elements, all of which are in the range 0. .. m:
e Running time is ©(n + m)

e What about the Q(n1gn) bound for all sorting algorithms?

CS245-2017S-12 Non-Comparison Sorts 6

12-27: ©() of Counting Sort

e What its the running time of Counting Sort?

o If the list has n elements, all of which are in the range 0 . . . m:
e Running time is ©(n + m)

e What about the Q(n1gn) bound for all sorting algorithms?

e For Comparison Sorts, which allow for sorting arbitrary data. What happens when m is very large?

12-28: Binsort
e Counting Sort will need some modification to allow us to sort records with integer keys, instead of just integers.
e Binsort is much like Counting Sort, except that in each index ¢ of the counting array C":

o Instead of storing the number of elements with the value 7, we store a list of all elements with the value .

12-29: Binsort Example
3 1 2 6 2 4 5 3 9 7 key

mar k john mary sue julie |[rachel pi xel [shadow | al ex j ames data

A

0 1 2 3 4 5 6 7 8 9
12-30: Binsort Example

3 1 2 6 2 4 5 3 9 7 key
mar k john mary sue julie |rachel pi xel [shadow | al ex j anes data
2 3
julie | ghadow
1 2 3 4 5 6 7 9
j ohn mary mar k achel pi xel sue j anes al ex

/ /

0 1 2 3 4 5 6 7 8 9
12-31: Binsort Example

CS245-2017S-12 Non-Comparison Sorts

john mary julie mark |shadow |[rachel pi xel sue j ames al ex data

1 2 3 4 5 6 7 9

al ex

john || mary mark | Fachel || pjxel sue j ames

/ /
0 1 2 3 4 5 6 7 8 9
12-32: Bucket Sort

e Expand the “bins” in Bin Sort to “buckets”
e Each bucket holds a range of key values, instead of a single key value

e Elements in each bucket are sorted.

12-33: Bucket Sort Example
114 26 | 50 |180 | 44 |111| 4 95 |196 |170 | key

john mary julie mark |shadow |rachel pi xel sue j anes al ex data

o

0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-34: Bucket Sort Example

CS245-2017S-12 Non-Comparison Sorts

26 | 50 (180 | 44 |111| 4 | 95 |196 |170 | key

mary julie mark |shadow |rachel pi xel sue j ames al ex data
114
john
[] []
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-35: Bucket Sort Example
50 |180 | 44 |111| 4 95 |196 |170 | key

julie mark |shadow |rachel pi xel sue j anes al ex data
26 114
mary john
/ [| [7]
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-36: Bucket Sort Example

CS245-2017S-12 Non-Comparison Sorts

180 | 44 | 111 | 4 | 95 |196 |170 | key

mark |shadow |rachel pi xel sue j ames al ex data
26 |50 114
mary (fjulie j ohn
/ [|/ []
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-37: Bucket Sort Example

44 1111 4 | 95 |196 |170 | key

shadow |rachel pi xel sue j anes al ex data
26 |50 114 180
mary |fljulie j ohn mar k
/ |1 [|
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-38: Bucket Sort Example

10

CS245-2017S-12 Non-Comparison Sorts
111 4 95 1196 (170 | key
rachel pi xel sue j ames al ex data
50
julie
26 || 44 114 180
mary | shadow j ohn mar k
/ [|/ [| |
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-39: Bucket Sort Example

4 [95 [196 [170 | key
pi xel sue |janes al ex data
50 114
julie john
26 || 44 111 180
mary | ishadow achel mar k
/ [|1 [| |
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-40: Bucket Sort Example

11

CS245-2017S-12 Non-Comparison Sorts
95 [196 [170 | key
sue |james al ex data
50 114
julie john
4 || 26|l 44 111 180
pi xel mary | ishadow rachel mar k
[|1 [\]
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199
12-41: Bucket Sort Example
196 | 170 | key
j anes al ex data
50 114
julie john
4 26 || 44 95 || 111 180
pi xel mary | ishadow sue achel mar k
/ [1|1
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-42: Bucket Sort Example

12

CS245-2017S-12 Non-Comparison Sorts
170 | key
alex | data
50 114 196
julie john j anes
4 26 || 44 95 [[111 180
pi xel mary | ishadow sue | fachel mar k
/ [|
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199
12-43: Bucket Sort Example
key
data
50 114 196
julie john j ames
4 26 || 44 95 |[111 1701[180
pi xel mary | shadow sue achel al ex rmar k
/ [|/
0 1 2 3 4 5 6 7 8 9
0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-44: Bucket Sort Example

CS245-2017S-12 Non-Comparison Sorts 13

4 26 | 44 | 50 | 95 [111114 |170 |180 |196 | key
pi xel mary |[shadow | julie sue rachel |john al ex mark |janes data
50 114 196
julie john j anes
4 1] 26144 95 |[111 170 ([180
pi xel mary | ishadow sue |fachel al ex mar k
/ [|/

0 1 2 3 4 5 6 7 8 9

0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-45: Counting Sort Revisited

e We’re going to look at counting sort again

e For the moment, we will assume that our array is indexed from 1...n (where n is the number of elements in
the list) instead of being indexed from 0. ..n — 1, to make the algorithm easier to understand

e Later, we will go back and change the algorithm to allow for an index between0...n — 1
12-46: Counting Sort Revisited
e Create the array C[], such that C[i] = # of times key ¢ appears in the array.
e Modify C[] such that C[i] = the index of key 4 in the sorted array. (assume no duplicate keys, for now)
o If z ¢ A, we don’t care about C/z]
12-47: Counting Sort Revisited
e Create the array C[], such that C[i] = # of times key ¢ appears in the array.
e Modify C[] such that C[i] = the index of key 4 in the sorted array. (assume no duplicate keys, for now)

o If z ¢ A, we don’t care about C/z]

for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-11;

e Example: 3124987
12-48: Counting Sort Revisited
e Once we have a modified C, such that C[i] = index of key 4 in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited

CS245-2017S-12 Non-Comparison Sorts 14

e Once we have a modified C, such that C[i] = index of key 4 in the array, how can we use C to sort the array?

for (i=1; i <= n; i++)
BI[C[A[i].key ()]1] = A[i];
for (i=1; 1 <= n; 1i++)
A[i] = BI[i];

e Example: 3124987

12-50: Counting Sort & Duplicates

o If alist has duplicate elements, and we create C' as before:

for(i=1; i <= n; 1i++)
C[A[1i] .key ()]++;

for(i=1; i < C.length; i++)
C[i] = C[i] + C[i-1];

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

o If alist has duplicate elements, and we create C' as before:

for(i=1; i <= n; 1i++)
CIA[i].key ()]++

for(i=1l; i < C.length; i++)
Cli] = C[i] + C[i-11;

What will the value of C[i] represent?
e The last index in A where element ¢ could appear.

12-52: (Almost) Final Counting Sort

for(i=1; i <= n; 1i++)
C[A[1i] .key ()]++;

for(i=1l; i < C.length; i++)
C[i] = C[i] + C[i-1];

for (<= n; i++) {

e Example: 312422916

12-53: (Almost) Final Counting Sort

CS245-2017S-12 Non-Comparison Sorts

for (i=1; i <= n; 1i++)
C[A[1i] .key ()]++;

for (i=1; i<C.length; i++)
C[i] = C[i] + C[i-171;

for (<= n; i++) {

i=1; i
B[C[A[i].key()]] = A[i];
Ali] .k

e Example: 312422916

o Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

=1; 1 <= n; i++)

Ali] .key ()]1++;

=1 < C.length; i++)
] i] + C[i-11;

for (i=1; i < n; i++)
A[i] = B[i];

e How would we change this algorithm if our arrays were indexed from 0...n — linstead of 1...n?

12-55: Final (!) Counting Sort

for(i=0; i < A.length; i++)
C[A[i] .key ()]++;

for(i=1l; i < C.length; i++)
C[i] = C[i] + C[i-1];

for (i=A.length - 1; 1i>=0; i++) {
CIA[i].key ()]1-—;
B[C[A[i].key()]] = A[i];

for (i=0; 1 < A.length; i++)
A[i] = B[i];
12-56: Radix Sort

e Sort a list of numbers one digit at a time

e Sort by Ist digit, then 2nd digit, etc

CS245-2017S-12 Non-Comparison Sorts

16

e Each sort can be done in linear time, using counting sort

o First Try: Sort by most significant digit, then the next most significant digit, and so on
e Need to keep track of a lot of sublists
12-57: Radix Sort Second Try:

e Sort by least significant digit first

e Then sort by next-least significant digit, using a Stable sort

e Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?
12-58: Radix Sort

o If (most significant digit of x) j
(most significant digit of y),
then x will appear in A before y.
12-59: Radix Sort
o If (most significant digit of x) i
(most significant digit of y),
then x will appear in A before .
e Last sort was by the most significant digit
12-60: Radix Sort
o If (most significant digit of x) i
(most significant digit of y),
then x will appear in A before y.
e Last sort was by the most significant digit
e If (most significant digit of x) =

(most significant digit of y) and

(second most significant digit of x) i

(second most significant digit of y),

then x will appear in A before y.

12-61: Radix Sort

CS245-2017S-12 Non-Comparison Sorts 17

o If (most significant digit of x) j
(most significant digit of y),
then x will appear in A before y.
e Last sort was by the most significant digit
e If (most significant digit of x) =

(most significant digit of y) and

(second most significant digit of) ;
(second most significant digit of y),
then x will appear in A before y.
e After next-to-last sort, x is before y. Last sort does not change relative order of z and y

12-62: Radix Sort
Original List

|982| 414]357|495/500{904| 645| 77| 716] 637] 149| 913|817 193] 730| 331|201

Sorted by Least Significant Digit

Sorted by Second Least Significant Digit
|5Q0|2(_)1|9Q4|913|414 7l6|817|7§0|3?_>1|6§7|6§5| 149|3§7|7Z7|9§2|423|4§5|

Sorted by Most Significant Digit
|149]201/381]357|414|295] 495|300| 637] 45| 716|130 777]17] 904) 913 982
12-63: Radix Sort

e We do not need to use a single digit of the key for each of our counting sorts

e We could use 2-digit chunks of the key instead

e Our C array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort
Original List
|9823|4376|2493|1055|8502|4333| 16738442 8035 6061|7004 | 3312|4409 2338

Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

1055|1673(2338|2493|3312|4333 |4376|4409 (6061|7004 |8035|8442|8502|9823
12-65: Radix Sort

e “Digit” does not need to be base ten

CS245-2017S-12 Non-Comparison Sorts

18

e For any value 7:

Sort the list based on (key % 7)

Sort the list based on ((key / 1) % 7))
Sort the list based on ((key / r2) % 1))
Sort the list based on ((key / %) % 7))

e Sort the list based on
((key / Tlogk(largcst value in array)) % 1))

e Code on other screen

