12-0: **Comparison Sorting**

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: **Decision Trees**

Insertion Sort on list \{a, b, c\}

```
  a < b < c  b < c < a
  a < c < b  c < a < b
  b < a < c  c < b < a
```

```
  a < b < c
  a < c < b
  c < a < b

  b < c
  c < b

  a < c < b
  b < c < a
  c < b < a
```

12-2: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-3: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-4: **Decision Trees**

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
• What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

 • The height of the tree – (depth of the deepest leaf) + 1

12-5: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?

12-6: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?

 • \(2^d \)

 • What is the minimum height, for a tree that has \(n \) leaves?

 • \(\lg n \)

 • How many leaves are there in a decision tree for sorting \(n \) elements?

12-7: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?

 • \(2^d \)

 • What is the minimum height, for a tree that has \(n \) leaves?

 • \(\lg n \)

 • How many leaves are there in a decision tree for sorting \(n \) elements?

12-8: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?

 • \(2^d \)

 • What is the minimum height, for a tree that has \(n \) leaves?

 • \(\lg n \)

 • How many leaves are there in a decision tree for sorting \(n \) elements?

 • \(n! \)

 • What is the minimum height, for a decision tree for sorting \(n \) elements?

12-9: Decision Trees

• What is the largest number of nodes for a tree of depth \(d \)?

 • \(2^d \)

 • What is the minimum height, for a tree that has \(n \) leaves?

 • \(\lg n \)

 • How many leaves are there in a decision tree for sorting \(n \) elements?

 • \(n! \)

 • What is the minimum height, for a decision tree for sorting \(n \) elements?
12-10: \(\lg(n!) \in \Omega(n \lg n) \)

\[
\lg(n!) = \lg(n \cdot (n-1) \cdot (n-2) \cdots \cdot 2 \cdot 1) \\
= (\lg n) + (\lg(n-1)) + (\lg(n-2)) + \ldots + (\lg 2) + (\lg 1) \\
\geq (\lg n) + (\lg(n-1)) + \ldots + (\lg(n/2)) \\
\geq (\lg n/2) + (\lg(n/2)) + \ldots + (\lg(n/2)) \\
= (n/2) \lg(n/2) \\
\in \Omega(n \lg n)
\]

12-11: **Sorting Lower Bound**

- All comparison sorting algorithms can be represented by a decision tree with \(n! \) leaves.
- The worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree.
- A decision tree with \(n! \) leaves must have a height of at least \(n \lg n \).
- All comparison sorting algorithms have worst-case running time \(\Omega(n \lg n) \).

12-12: **Counting Sort**

- Sorting a list of \(n \) integers.
- We know all integers are in the range 0 . . . \(m \).
- We can potentially sort the integers faster than \(n \lg n \).
- Keep track of a “Counter Array” \(C \):
 - \(C[i] = \# \) of times value \(i \) appears in the list.

Example: 3 1 3 5 2 1 6 7 8 1

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0</td>
<td></td>
</tr>
</tbody>
</table>

12-13: **Counting Sort Example**

3135216781

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>
12-14: Counting Sort Example

135216781

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-15: Counting Sort Example

35216781

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-16: Counting Sort Example

5216781

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-17: Counting Sort Example

216781

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-18: Counting Sort Example

16781

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-19: Counting Sort Example

6781

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

12-20: Counting Sort Example
12-21: Counting Sort Example

81

12-22: Counting Sort Example

1

12-23: Counting Sort Example

1 1 1 2 3 3 5 6 7 8

12-25: Θ() of Counting Sort

• What is the running time of Counting Sort?

• If the list has \(n \) elements, all of which are in the range \(0 \ldots m \):

12-26: Θ() of Counting Sort

• What is the running time of Counting Sort?

• If the list has \(n \) elements, all of which are in the range \(0 \ldots m \):

 • Running time is \(\Theta(n + m) \)

• What about the \(\Omega(n \lg n) \) bound for all sorting algorithms?
12-27: $\Theta()$ of Counting Sort

- What is the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \ldots m$:
 - Running time is $\Theta(n + m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?
 - For Comparison Sorts, which allow for sorting arbitrary data. What happens when m is very large?

12-28: Binsort

- Counting Sort will need some modification to allow us to sort records with integer keys, instead of just integers.
- Binsort is much like Counting Sort, except that in each index i of the counting array C:
 - Instead of storing the number of elements with the value i, we store a list of all elements with the value i.

12-29: Binsort Example

<table>
<thead>
<tr>
<th>key</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>mark</td>
</tr>
<tr>
<td>1</td>
<td>john</td>
</tr>
<tr>
<td>2</td>
<td>mary</td>
</tr>
<tr>
<td>6</td>
<td>sue</td>
</tr>
<tr>
<td>2</td>
<td>julie</td>
</tr>
<tr>
<td>4</td>
<td>rachel</td>
</tr>
<tr>
<td>5</td>
<td>pixel</td>
</tr>
<tr>
<td>3</td>
<td>shadow</td>
</tr>
<tr>
<td>9</td>
<td>alex</td>
</tr>
<tr>
<td>7</td>
<td>james</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9

12-30: Binsort Example

<table>
<thead>
<tr>
<th>key</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>mark</td>
</tr>
<tr>
<td>1</td>
<td>john</td>
</tr>
<tr>
<td>2</td>
<td>mary</td>
</tr>
<tr>
<td>6</td>
<td>sue</td>
</tr>
<tr>
<td>2</td>
<td>julie</td>
</tr>
<tr>
<td>4</td>
<td>rachel</td>
</tr>
<tr>
<td>5</td>
<td>pixel</td>
</tr>
<tr>
<td>3</td>
<td>shadow</td>
</tr>
<tr>
<td>9</td>
<td>alex</td>
</tr>
<tr>
<td>7</td>
<td>james</td>
</tr>
</tbody>
</table>

0 1 2 3 4 5 6 7 8 9

12-31: Binsort Example
12-32: **Bucket Sort**

- Expand the “bins” in Bin Sort to “buckets”
- Each bucket holds a range of key values, instead of a single key value
- Elements in each bucket are sorted.

12-33: **Bucket Sort Example**

<table>
<thead>
<tr>
<th>114</th>
<th>26</th>
<th>50</th>
<th>180</th>
<th>44</th>
<th>111</th>
<th>4</th>
<th>95</th>
<th>196</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
<td>mary</td>
<td>julie</td>
<td>mark</td>
<td>shadow</td>
<td>rachel</td>
<td>pixel</td>
<td>sue</td>
<td>james</td>
<td>alex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

0-19 40-59 80-99 120-139 160-179
20-39 60-79 100-119 140-159 180-199

12-34: **Bucket Sort Example**
12-35: Bucket Sort Example

<table>
<thead>
<tr>
<th>26</th>
<th>50</th>
<th>180</th>
<th>44</th>
<th>111</th>
<th>4</th>
<th>95</th>
<th>196</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>mary</td>
<td>julie</td>
<td>mark</td>
<td>shadow</td>
<td>rachel</td>
<td>pixel</td>
<td>sue</td>
<td>james</td>
<td>alex</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

| 0-19 | 40-59 | 80-99 | 120-139 | 160-179 | 20-39 | 60-79 | 100-119 | 140-159 | 180-199 |

12-36: Bucket Sort Example

<table>
<thead>
<tr>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>mary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>john</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
<th>/</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

| 0-19 | 40-59 | 80-99 | 120-139 | 160-179 | 20-39 | 60-79 | 100-119 | 140-159 | 180-199 |
12-37: Bucket Sort Example

12-38: Bucket Sort Example
Bucket Sort Example
12-41: Bucket Sort Example

12-42: Bucket Sort Example
12-43: Bucket Sort Example

12-44: Bucket Sort Example
12-45: Counting Sort Revisited

- We’re going to look at counting sort again
- For the moment, we will assume that our array is indexed from $1 \ldots n$ (where n is the number of elements in the list) instead of being indexed from $0 \ldots n - 1$, to make the algorithm easier to understand
- Later, we will go back and change the algorithm to allow for an index between $0 \ldots n - 1$

12-46: Counting Sort Revisited

- Create the array $C[]$, such that $C[i] = \# \text{ of times key } i \text{ appears in the array}$.
- Modify $C[]$ such that $C[i] = \text{ the index of key } i \text{ in the sorted array. (assume no duplicate keys, for now)}$
- If $x \not\in A$, we don’t care about $C[x]$

12-47: Counting Sort Revisited

- Create the array $C[]$, such that $C[i] = \# \text{ of times key } i \text{ appears in the array}$.
- Modify $C[]$ such that $C[i] = \text{ the index of key } i \text{ in the sorted array. (assume no duplicate keys, for now)}$
- If $x \not\in A$, we don’t care about $C[x]$

\[
\text{for}(i=1; \ i<C.length; \ i++)
\]
\[
C[i] = C[i] + C[i-1];
\]

- Example: 3 1 2 4 9 8 7

12-48: Counting Sort Revisited

- Once we have a modified C, such that $C[i] = \text{ index of key } i \text{ in the array}, \text{ how can we use } C \text{ to sort the array? }
• Once we have a modified C, such that $C[i] = \text{index of key } i \text{ in the array}$, how can we use C to sort the array?

```java
for (i=1; i <= n; i++)
    B[C[A[i].key()]] = A[i];
for (i=1; i <= n; i++)
    A[i] = B[i];
```

• Example: 3 1 2 4 9 8 7

12-50: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

```java
for (i=1; i <= n; i++)
    C[A[i].key()]++;
for (i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];
```

What will the value of $C[i]$ represent?

12-51: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

```java
for (i=1; i <= n; i++)
    C[A[i].key()]++;
for (i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];
```

What will the value of $C[i]$ represent?

• The last index in A where element i could appear.

12-52: (Almost) Final Counting Sort

```java
for (i=1; i <= n; i++)
    C[A[i].key()]++;
for (i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];

for (i=1; i <= n; i++)
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
for (i=1; i <= n; i++)
    A[i] = B[i];
```

• Example: 3 1 2 4 2 2 9 1 6

12-53: (Almost) Final Counting Sort
for (i = 1; i <= n; i++)
 C[A[i].key()]++;
for (i = 1; i < C.length; i++)
 C[i] = C[i] + C[i-1];

for (i = 1; i <= n; i++) {
 B[C[A[i].key()]%] = A[i];
 C[A[i].key()]--;
}
for (i = 1; i <= n; i++)
 A[i] = B[i];

• Example: 3 1 2 4 2 2 9 1 6
• Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

for (i = 1; i <= n; i++)
 C[A[i].key()]++;
for (i = 1; i < C.length; i++)
 C[i] = C[i] + C[i-1];

for (i = n; i >= 1; i++) {
 B[C[A[i].key()]%] = A[i];
 C[A[i].key()]--;
}
for (i = 1; i < n; i++)
 A[i] = B[i];

• How would we change this algorithm if our arrays were indexed from 0...n − 1 instead of 1...n?

12-55: Final (!) Counting Sort

for (i = 0; i < A.length; i++)
 C[A[i].key()]++;
for (i = 1; i < C.length; i++)
 C[i] = C[i] + C[i-1];

for (i = A.length - 1; i >= 0; i++) {
 C[A[i].key()]--;
 B[C[A[i].key()]%] = A[i];
}
for (i = 0; i < A.length; i++)
 A[i] = B[i];

12-56: Radix Sort

• Sort a list of numbers one digit at a time
 • Sort by 1st digit, then 2nd digit, etc
• Each sort can be done in linear time, using counting sort

• First Try: Sort by most significant digit, then the next most significant digit, and so on
 • Need to keep track of a lot of sublists

12-57: **Radix Sort** Second Try:
• Sort by *least significant* digit first
• Then sort by next-least significant digit, using a Stable sort
 ...
• Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why?

12-58: **Radix Sort**
• If (most significant digit of \(x \)) \(\neq \) (most significant digit of \(y \)),
 then \(x \) will appear in \(A \) before \(y \).

12-59: **Radix Sort**
• If (most significant digit of \(x \)) \(\neq \) (most significant digit of \(y \)),
 then \(x \) will appear in \(A \) before \(y \).
 • Last sort was by the most significant digit

12-60: **Radix Sort**
• If (most significant digit of \(x \)) = (most significant digit of \(y \)),
 then \(x \) will appear in \(A \) before \(y \).
 • Last sort was by the most significant digit

• If (most significant digit of \(x \)) = (most significant digit of \(y \)) and
 (second most significant digit of \(x \)) \(\neq \) (second most significant digit of \(y \)),
 then \(x \) will appear in \(A \) before \(y \).

12-61: **Radix Sort**
• If (most significant digit of x) \textgreater (most significant digit of y),
 then x will appear in A before y.

• Last sort was by the most significant digit

• If (most significant digit of x) = (most significant digit of y) and
 (second most significant digit of x) \textless (second most significant digit of y),
 then x will appear in A before y.

• After next-to-last sort, x is before y. Last sort does not change relative order of x and y

12-62: Radix Sort

Original List

| 982 | 414 | 357 | 495 | 500 | 904 | 645 | 777 | 716 | 637 | 149 | 913 | 817 | 493 | 730 | 331 | 201 |

Sorted by Least Significant Digit

| 500 | 730 | 331 | 201 | 982 | 493 | 913 | 414 | 904 | 645 | 495 | 716 | 357 | 777 | 637 | 817 | 149 |

Sorted by Second Least Significant Digit

| 500 | 201 | 904 | 913 | 414 | 716 | 817 | 730 | 331 | 637 | 645 | 149 | 357 | 777 | 982 | 493 | 495 |

Sorted by Most Significant Digit

| 149 | 201 | 331 | 357 | 414 | 493 | 495 | 500 | 637 | 645 | 716 | 730 | 777 | 817 | 904 | 913 | 982 |

12-63: Radix Sort

• We do not need to use a single digit of the key for each of our counting sorts

• We could use 2-digit chunks of the key instead

• Our C array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort

Original List

| 9823 | 4376 | 2493 | 1055 | 8502 | 4333 | 1673 | 8442 | 8035 | 6061 | 7004 | 3312 | 4409 | 2338 |

Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

| 8502 | 7004 | 4409 | 3312 | 9823 | 4333 | 8035 | 2338 | 8442 | 1055 | 6061 | 1673 | 4376 | 2493 |

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

| 1055 | 1673 | 2338 | 2493 | 3312 | 4333 | 4376 | 4409 | 6061 | 7004 | 8035 | 8442 | 8502 | 9823 |

12-65: Radix Sort

• “Digit” does not need to be base ten
• For any value r:
 • Sort the list based on $(\text{key} \mod r)$
 • Sort the list based on $((\text{key} \div r) \mod r)$
 • Sort the list based on $((\text{key} \div r^2) \mod r)$
 • Sort the list based on $((\text{key} \div r^3) \mod r)$
 ...
 • Sort the list based on
 $((\text{key} \div r^{\log_k(\text{largest value in array})}) \mod r)$

• Code on other screen