
CS245-2017S-13 Hash Tables 1

13-0: Searching & Selecting

• Maintian a Database (keys and associated data)

• Operations:

• Add a key / value pair to the database

• Remove a key (and associated value) from the database

• Find the value associated with a key

13-1: Sorted List Implementation

If database is implemented as a sorted list:

• Add

• Remove

• Find

13-2: Sorted List Implementation

If database is implemented as a sorted list:

• Add O(n)

• Remove O(n)

• Find O(lg n)

13-3: BST Implementation

If database is implemented as a Binary Search Tree:

• Add

• Remove

• Find

13-4: BST Implementation

If database is implemented as a Binary Search Tree:

• Add O(lg n) best, O(n) worst

• Remove O(lg n) best, O(n) worst

• Find O(lg n) best, O(n) worst

13-5: Unsorted List

Maintain an unsorted, non-contiguous array of elements

3415 813 6

• How long does a Find take?

• How long does a Remove take?

• How long does an Add take?



CS245-2017S-13 Hash Tables 2

Does this sound like a good idea?

13-6: Hash Function

• What if we had a “magic function” –

• Takes a key as input

• Returns the index in the array where the key can be found, if the key is in the array

• To add an element

• Put the key through the magic function, to get a location

• Store element in that location

• To find an element

• Put the key through the magic function, to get a location

• See if the key is stored in that location

13-7: Hash Function

• The “magic function” is called a Hash function

• If hash(key) = i, we say that the key hashes to the value i

• We’d like to ensure that different keys will always hash to different values.

• Why is this not possible?

13-8: Hash Function

• The “magic function” is called a Hash function

• If hash(key) = i, we say that the key hashes to the value i

• We’d like to ensure that different keys will always hash to different values.

• Why is this not possible?

• Too many possible keys

• If keys are strings of up to 15 letters, there are 1021 different keys

• 1 sextillion – roughly the total number of transistors that have ever been produced.

13-9: Integer Hash Function

• When two keys hash to the same value, a collision occurs.

• We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly

through the array.

• Example: Keys are integers

• Keys are in range 1 . . .m

• Array indices are in range 1 . . . n

• n << m



CS245-2017S-13 Hash Tables 3

13-10: Integer Hash Function

• When two keys hash to the same value, a collision occurs.

• We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly

through the array.

• Example: Keys are integers

• Keys are in range 1 . . .m

• Array indices are in range 1 . . . n

• n << m

• hash(k) = k mod n

13-11: Integer Hash Function

• What if table size = 10, all keys end in 0?

13-12: Integer Hash Function

• What if table size = 10, all keys end in 0?

• What if table size is even, all keys are even?

13-13: Integer Hash Function

• What if table size = 10, all keys end in 0?

• What if table size is even, all keys are even?

• In general, what if the table size and many of the keys share factors?

13-14: Integer Hash Function

• What if table size = 10, all keys end in 0?

• What if table size is even, all keys are even?

• In general, what if the table size and many of the keys share factors?

• What can we do?

13-15: Integer Hash Function

• What if table size = 10, all keys end in 0?

• What if table size is even, all keys are even?

• In general, what if the table size and many of the keys share factors?

• What can we do?

• Prevent keys and table size from sharing factors.

• No control over the keys.

13-16: Integer Hash Function



CS245-2017S-13 Hash Tables 4

• What if table size = 10, all keys end in 0?

• What if table size is even, all keys are even?

• In general, what if the table size and many of the keys share factors?

• What can we do?

• Prevent keys and table size from sharing factors.

• No control over the keys.

• Make the table size prime.

13-17: String Hash Function

• Hash tables are usually used to store string values

• If we can convert a string into an integer, we can use the integer hash function

• How can we convert a string into an integer?

13-18: String Hash Function

• Hash tables are usually used to store string values

• If we can convert a string into an integer, we can use the integer hash function

• How can we convert a string into an integer?

• Add up ASCII values of the characters in the string

int hash(String key, int tableSize) {

int hashvalue = 0;

for (int i=0; i<key.length(); i++)

hashvalue += (int) key.charAt(i);

return hashvalue % tableSize;

}

13-19: String Hash Function

• Hash tables are usually used to store string values

• If we can convert a string into an integer, we can use the integer hash function

• How can we convert a string into an integer?

• Concatenate ASCII digits together

keysize−1∑

k=0

key[k] ∗ 256keysize−k−1

13-20: String Hash Function

• Concatenating digits does not work, since numbers get big too fast. Solutions:

• Overlap digits a little (use base of 32 instead of 256)



CS245-2017S-13 Hash Tables 5

• Ignore early characters (shift them off the left side of the string)

static long hash(String key, int tablesize) {

long h = 0;

int i;

for (i=0; i<key.length(); i++)

h = (h << 4) + (int) key.charAt(i);

return h % tablesize;

}

13-21: ElfHash

• For each new character, the hash value is shifted to the left, and the new character is added to the accumulated

value.

• If the string is long, the early characters will “fall off” the end of the hash value when it is shifted

• Early characters will not affect the hash value of large strings

• Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and

XOR’ed.

• Every character will influence the value of the hash function.

13-22: ElfHash

static long ELFhash(String key, int tablesize) {

long h = 0;

long g;

int i;

for (i=0; i<key.length(); i++) {

h = (h << 4) + (int) key.charAt(i);

g = h & 0xF0000000L;

if (g != 0)

h ˆ= g >>> 24

h &= ˜g

}

return h % M;

}

13-23: Collisions

• When two keys hash to the same value, a collision occurs

• A collision strategy tells us what to do when a collision occurs

• Two basic collision strategies:

• Open Hashing (Closed Addressing, Separate Chaining)

• Closed Hashing (Open Addressing)

13-24: Open Hashing

• Array does not store elements, but linked-lists of elements



CS245-2017S-13 Hash Tables 6

• To Add an element to the hash table:

• Hash the key to get an index i

• Store the key/value pair in the linked list at index i

• To find an element in the hash table

• Hash the key to get an index i

• Search the linked list at index i for the key

13-25: Open Hashing

Under the following conditions:

• Keys are evenly distributed through the hash table

• Size of the hash table = # of keys inserted

What is the running time for the following operations:

• Add

• Remove

• Find

13-26: Open Hashing

Under the following conditions:

• Keys are evenly distributed through the hash table

• Size of the hash table = # of keys inserted

What is the running time for the following operations:

• Add Θ(1)

• Remove Θ(1)

• Find Θ(1)

13-27: Closed Hashing

• Values are stored in the array itself (no linked lists)

• The number of elements that can be stored in the hash table is limited to the table size (hence closed hashing)

13-28: Closed Hashing

• To add element X to a closed hash table:

• Find the smallest i, such that Array[hash(x) + f(i)] is empty (wrap around if necessary)

• Add X to Array[hash(x) + f(i)]

• If f(i) = i, linear probing

13-29: Closed Hashing

• Problems with linear probing:



CS245-2017S-13 Hash Tables 7

• Primary Clustering

• “Clumps” – large sequences of consecutively filled array elements – tend to form

• Positive feedback system – the larger the clumps, the more likely an element will end up in a clump.

13-30: Closed Hashing

• Quadradic probing

• Find the smallest i, such that Array[hash(x) + f(i)] is empty

• Add X to Array[hash(x) + f(i)]

• f(i) = i2

13-31: Closed Hashing

• Quadradic probing

• Find the smallest i, such that Array[hash(x) + f(i)] is empty

• Add X to Array[hash(x) + f(i)]

• f(i) = i2

• Problems:

• Can’t reach all elements in the list

13-32: Closed Hashing

• Quadradic probing

• Find the smallest i, such that Array[hash(x) + f(i)] is empty

• Add X to Array[hash(x) + f(i)]

• f(i) = i2

• Problems:

• Can’t reach all elements in the list

• (if table is less than 1/2 full, and table size is an integer, guaranteed to be able to add an element)

13-33: Closed Hashing

• Pseudo-Random

• Create a “Permutation Array” P

• f(i) = P[i]

13-34: Closed Hashing

• Multiple keys hash to the same element

• Secondary clustering

• Double Hashing

• Use a secondary hash function to determine how far ahead to look



CS245-2017S-13 Hash Tables 8

• f(i) = i * hash2(key)

13-35: Deletion

• Deletion from an open hash table is easy.

• Find the element.

• Delete it.

• Deletion from a closed hash table is harder.

• Why?

13-36: Deletion

• Deletion a closed hash table can cause problems

• Three different kinds of entries

• Empty cells

• Cells that contain data

• Cells that have been deleted (tombstones)

13-37: Deletion

• To insert an element:

• Find the smallest i such that hash(x) + f(i) is either empty or deleted

• To find an element

• Try all values of i (starting with 0) until either

• Table[hash(x) + f(i)] = x

• Table[hash(x) + f(i)] is empty (not deleted)

13-38: Rehashing

• What can we do when our closed hash table gets full?

• – Or if the load (# of elements / table size) gets larger than 0.5

• Create a new, larger table

• New hash table will have a different hash function, since the table size is different

• Add each element in the old table to the new table

13-39: Rehashing

• When we creata a new table, it should be approx. twice as large as the old table

• A single insert can now require Θ(n) work

• ... but only after Θ(n) inserts

• Time for n inserts is Θ(n)

• Average time for an insert is still Θ(1)

• What happens if we make the table 100 units larger, instead of twice as large?

• Rememeber to keep the table size prime!


