14-0: **Disjoint Sets**

- Maintain a collection of sets
- Operations:
 - Determine which set an element is in
 - Union (merge) two sets
- Initially, each element is in its own set
 - # of sets = # of elements

14-1: **Disjoint Sets**

- Elements will be integers (for now)
- Operations:
 - CreateSets(n) – Create n sets, for integers 0..(n-1)
 - Union(x,y) – merge the set containing x and the set containing y
 - Find(x) – return a representation of x’s set
 - Find(x) = Find(y) iff x,y are in the same set

14-2: **Disjoint Sets**

- Implementing Disjoint sets
 - How should disjoint sets be implemented?

14-3: **Implementing Disjoint Sets**

- Implementing Disjoint sets (First Try)
 - Array of set identifiers:
 - Set[i] = set containing element i
 - Initially, Set[i] = i

14-4: **Implementing Disjoint Sets**

- Creating sets:

14-5: **Implementing Disjoint Sets**

- Creating sets: (pseudo-Java)

```java
def CreateSets(n) {
    for (i=0; i<n; i++) {
        Set[i] = i;
    }
}
```

14-6: **Implementing Disjoint Sets**

- Find:
14-7: **Implementing Disjoint Sets**

- Find: (pseudo-Java)

```java
int Find(x) {
    return Set[x];
}
```

14-8: **Implementing Disjoint Sets**

- Union:

14-9: **Implementing Disjoint Sets**

- Union: (pseudo-Java)

```java
void Union(x, y) {
    set1 = Set[x];
    set2 = Set[y];
    for (i = 0; i < n; i++)
        if (Set[i] == set2)
            Set[i] = set1;
}
```

14-10: **Disjoint Sets Θ()**

- CreateSets
- Find
- Union

14-11: **Disjoint Sets Θ()**

- CreateSets: Θ(n)
- Find: Θ(1)
- Union: Θ(n)

14-12: **Disjoint Sets Θ()**

- CreateSets: Θ(n)
- Find: Θ(1)
- Union: Θ(n)

We can do better! (At least for Union ...)

14-13: **Implementing Disjoint Sets II**

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
• How can we easily find the root of a tree containing x?

14-14: Implementing Disjoint Sets II

• Store elements in trees
• All elements in the same set will be in the same tree
• Find(x) returns the element at the root of the tree containing x
 • How can we easily find the root of a tree containing x?
 • Implement trees using parent pointers instead of children pointers

14-15: Trees Using Parent Pointers

• Examples:

14-16: Implementing Disjoint Sets II

• Each element is represented by a node in a tree
• Maintain an array of pointers to nodes

14-17: Implementing Disjoint Sets II

• Each element is represented by a node in a tree
• Maintain an array of pointers to nodes
Implementing Disjoint Sets II

- Find:

- Follow parent pointers, until root is reached.
 - Root is node with null parent pointer.
 - Return element at root

Implementing Disjoint Sets II

- Find: (pseudo-Java)

```java
int Find(x) {
    Node tmp = Sets[x];
    while (tmp.parent != null)
        tmp = tmp.parent;
    return tmp.element;
}
```

Implementing Disjoint Sets II

- Union(x,y)

Implementing Disjoint Sets II

- Union(x,y)
 - Calculate:
 - Root of x’s tree, rootx
 - Root of y’s tree, rooty
 - Set parent(rootx) = rooty

Implementing Disjoint Sets II

- Union(x,y) (pseudo-Java)
void Union(x, y) {
 rootx = Find(x);
 rooty = Find(y);
 Sets[rootx].parent = Sets[rooty];
}

14-24: Removing pointers

- We don’t need any pointers
- Instead, use index into set array

```
-1 -1 -1 -1 -1 -1 -1 -1
0 1 2 3 4 5 6 7 8
```

14-25: Removing pointers

```
-1 -1 -1 -1 -1 -1 -1 -1
0 1 2 3 4 5 6 7 8
```

- Union(2,3), Union(6,8), Union(0,2), Union(2,6)

14-26: Removing pointers

```
3 -1 3 8 -1 -1 8 -1 -1
0 1 2 3 4 5 6 7 8
```

- Union(2,3), Union(6,8), Union(0,2), Union(2,8)

14-27: Implementing Disjoint Sets III

- Find: (pseudo-Java)

```java
int Find(x) {
    while (Parent[x] != -1)
        x = Parent[x]
    return x
}
```

14-28: Implementing Disjoint Sets II

- Union(x,y) (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Parent[rootx] = rooty;
}
```
14-29: **Efficiency of Disjoint Sets II**

- So far, we haven’t done much to improve the run-time efficiency of Disjoint sets.
- Two improvements will make a huge difference:
 - Union by rank
 - Path compression

14-30: **Union by Rank**

- When we merge two sets:
 - “Shorter” tree point to the taller tree

14-31: **Union by Rank**

- We need to keep track of the height of each tree
- How?

14-32: **Union by Rank**

- We need to keep track of the height of each tree
 - Store the height of the tree at the root
 - If a node \(x \) is not a root, \(Parent[x] = \) parent of \(x \)
 - If a node \(x \) is a root, \(Parent[x] = 0 \) - # height of tree rooted at \(x \)

14-33: **Union by Rank**

- Examples

14-34: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?

14-35: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?
 - The node with the larger (less negative) \(Parent[] \) value points to the node with the smaller (more negative) \(Parent[] \) value. Break ties arbitrarily.
 - How do we update the height of the new merged tree?

14-36: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?
 - The node with the larger (less negative) \(Parent[] \) value points to the node with the smaller (more negative) \(Parent[] \) value. Break ties arbitrarily.
 - How do we update the height of the new merged tree?
 - If trees are different sizes, do nothing
• If trees are the same size, increase (decrease) new parent by 1.

14-37: **Union by Rank**

• Union(x,y) (pseudo-Java)

```java
void Union(x,y) {
    rootx = Find(x);
    rooty = Find(y);
    if (Parent[rootx] < Parent[rooty]) {
        Parent[rooty] = x;
    } else {
        if Parent[rootx] == Parent[rooty]
            Parent[rooty]--;
        Parent[rootx] = rooty;
    }
}
```

14-38: **Path Compression**

• After each call to Find(x), change x’s parent pointer to point directly at root

• Also, change all parent pointers on path from x to root

14-39: **Implementing Disjoint Sets III**

• Find: (pseudo-Java)

```java
int Find(x) {
    if (Parent[x] < 0)
        return x;
    else {
        Parent[x] = Find(Parent[x]);
        return Parent[x];
    }
}
```

14-40: **Disjoint Set Θ**

• Time to do a Find / Union proportional to the depth of the trees

• “Union by Rank” tends to keep tree sizes down

• “Path compression” makes Find and Union causes trees to flatten

• Union / Find take roughly time $O(1)$ on average

14-41: **Disjoint Set Θ**

• Technically, n Find/Unions take time $O(n \lg^* n)$

• $\lg^* n$ is the number of times we need to take \lg of n to get to 1.

 • $\lg 2 = 1, \lg^* 2 = 1$
 • $\lg(\lg 4) = 1, \lg^* 4 = 2$
- \(\lg(\lg(\lg(16))) = 1, \lg^* 16 = 3 \)
- \(\lg(\lg(\lg(65536))) = 1, \lg^* 65536 = 4 \)
- \(\ldots \)
- \(\lg^* 2^{65536} = 5 \)

- # of atoms in the universe \(\approx 10^{80} \ll 2^{65536} \)
- \(\lg^* n \leq 5 \) for all practical values of \(n \)