14-0: **Disjoint Sets**

- Maintain a collection of sets
- Operations:
 - Determine which set an element is in
 - Union (merge) two sets
- Initially, each element is in its own set
 - # of sets = # of elements

14-1: **Disjoint Sets**

- Elements will be integers (for now)
- Operations:
 - CreateSets(n) – Create n sets, for integers 0..(n-1)
 - Union(x,y) – merge the set containing x and the set containing y
 - Find(x) – return a representation of x’s set
 - Find(x) = Find(y) iff x,y are in the same set

14-2: **Implementing Disjoint sets**

- How should disjoint sets be implemented?

14-3: **Implementing Disjoint Sets**

- Implementing Disjoint sets (First Try)
 - Array of set identifiers:
 - Set[i] = set containing element i
 - Initially, Set[i] = i

14-4: **Implementing Disjoint Sets**

- Creating sets:

14-5: **Implementing Disjoint Sets**

- Creating sets: (pseudo-Java)

```java
void CreateSets(n) {
    for (i=0; i<n; i++) {
        Set[i] = i;
    }
}
```

14-6: **Implementing Disjoint Sets**

- Find:
14-7: Implementing Disjoint Sets

- Find: (pseudo-Java)

```java
int Find(x) {
    return Set[x];
}
```

14-8: Implementing Disjoint Sets

- Union:

14-9: Implementing Disjoint Sets

- Union: (pseudo-Java)

```java
void Union(x, y) {
    set1 = Set[x];
    set2 = Set[y];
    for (i=0; i < n; i=+)
        if (Set[i] == set2)
            Set[i] = set1;
}
```

14-10: Disjoint Sets Θ()

- CreateSets
- Find
- Union

14-11: Disjoint Sets Θ()

- CreateSets: Θ(n)
- Find: Θ(1)
- Union: Θ(n)

14-12: Disjoint Sets Θ()

- CreateSets: Θ(n)
- Find: Θ(1)
- Union: Θ(n)

We can do better! (At least for Union ...) 14-13: Implementing Disjoint Sets II

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
• How can we easily find the root of a tree containing x?

14-14: **Implementing Disjoint Sets II**

- Store elements in trees
- All elements in the same set will be in the same tree
- Find(x) returns the element at the root of the tree containing x
 - How can we easily find the root of a tree containing x?
 - Implement trees using *parent pointers* instead of *children pointers*

14-15: **Trees Using Parent Pointers**

- Examples:

```
1
  /  \
2     3
  |   /  \
4   5  6
  |   |   /  \
7  8
```

14-16: **Implementing Disjoint Sets II**

- Each element is represented by a node in a tree
- Maintain an array of pointers to nodes

```
0 1 2 3 4 5 6 7 8
```

14-17: **Implementing Disjoint Sets II**

- Each element is represented by a node in a tree
- Maintain an array of pointers to nodes
14-18: **Implementing Disjoint Sets II**

- **Find:**

14-19: **Implementing Disjoint Sets II**

- **Find:**
 - Follow parent pointers, until root is reached.
 - Root is node with null parent pointer.
 - Return element at root

14-20: **Implementing Disjoint Sets II**

- **Find:** (pseudo-Java)

```java
int Find(x) {
    Node tmp = Sets[x];
    while (tmp.parent != null)
        tmp = tmp.parent;
    return tmp.element;
}
```

14-21: **Implementing Disjoint Sets II**

- **Union(x,y)**

14-22: **Implementing Disjoint Sets II**

- **Union(x,y)**
 - Calculate:
 - Root of x’s tree, rootx
 - Root of y’s tree, rooty
 - Set parent(rootx) = rooty

14-23: **Implementing Disjoint Sets II**

- **Union(x,y)** (pseudo-Java)
void Union(x, y) {
 rootx = Find(x);
 rooty = Find(y);
 Sets[rootx].parent = Sets[rooty];
}

14-24: Removing pointers

• We don’t need any pointers
• Instead, use index into set array

\[
\begin{array}{cccccccc}
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

14-25: Removing pointers

• Union(2,3), Union(6,8), Union(0,2), Union(2,6)

\[
\begin{array}{cccccccc}
-1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

14-26: Removing pointers

• Union(2,3), Union(6,8), Union(0,2), Union(2,8)

\[
\begin{array}{cccccccc}
3 & -1 & 3 & 8 & -1 & -1 & 8 & -1 & -1 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

14-27: Implementing Disjoint Sets III

• Find: (pseudo-Java)

```
int Find(x) {
    while (Parent[x] != -1)
        x = Parent[x]
    return x
}
```

14-28: Implementing Disjoint Sets II

• Union(x,y) (pseudo-Java)

```
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Parent[rootx] = rooty;
}
```
14-29: **Efficiency of Disjoint Sets II**

- So far, we haven’t done much to improve the run-time efficiency of Disjoint sets.
- Two improvements will make a huge difference:
 - Union by rank
 - Path compression

14-30: **Union by Rank**

- When we merge two sets:
 - “Shorter” tree point to the taller tree

14-31: **Union by Rank**

- We need to keep track of the height of each tree
- How?

14-32: **Union by Rank**

- We need to keep track of the height of each tree
 - Store the height of the tree at the root
 - If a node \(x \) is not a root, \(Parent[x] \) = parent of \(x \)
 - If a node \(x \) is a root, \(Parent[x] = 0 \) - # height of tree rooted at \(x \)

14-33: **Union by Rank**

- Examples

14-34: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?

14-35: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?
 - The node with the larger (less negative) \(Parent[] \) value points to the node with the smaller (more negative) \(Parent[] \) value. Break ties arbitrarily.
 - How do we update the height of the new merged tree?

14-36: **Union by Rank**

- When we merge two trees, how do we know which tree to point at the other?
 - The node with the larger (less negative) \(Parent[] \) value points to the node with the smaller (more negative) \(Parent[] \) value. Break ties arbitrarily.
 - How do we update the height of the new merged tree?
 - If trees are different sizes, do nothing
• If trees are the same size, increase (decrease) new parent by 1.

14-37: Union by Rank

• Union(x, y) (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    if (Parent[rootx] < Parent[rooty]) {
        Parent[rooty] = x;
    } else {
        if Parent[rootx] == Parent[rooty]
            Parent[rooty]--;
        Parent[rootx] = rooty;
    }
}
```

14-38: Path Compression

• After each call to Find(x), change x’s parent pointer to point directly at root
• Also, change all parent pointers on path from x to root

14-39: Implementing Disjoint Sets III

• Find: (pseudo-Java)

```java
int Find(x) {
    if (Parent[x] < 0)
        return x;
    else {
        Parent[x] = Find(Parent[x]);
        return Parent[x];
    }
}
```

14-40: Disjoint Set ∘

• Time to do a Find / Union proportional to the depth of the trees
• “Union by Rank” tends to keep tree sizes down
• “Path compression” makes Find and Union causes trees to flatten
• Union / Find take roughly time O(1) on average

14-41: Disjoint Set ∘

• Technically, n Find/Unions take time O(n lg* n)
• lg* n is the number of times we need to take lg of n to get to 1.
 • lg 2 = 1, lg* 2 = 1
 • lg(lg 4) = 1, lg* 4 = 2
• \(\lg(\lg(\lg 16)) = 1, \lg^* 16 = 3 \)
• \(\lg(\lg(\lg(\lg 65536))) = 1, \lg^* 65536 = 4 \)
• \(\ldots \)
• \(\lg^* 2^{65536} = 5 \)

• # of atoms in the universe \(\approx 10^{80} \ll 2^{65536} \)
• \(\lg^* n \leq 5 \) for all practical values of \(n \)