A graph consists of:

- A set of nodes or vertices (terms are interchangable)
- A set of edges or arcs (terms are interchangable)
- Edges in graph can be either directed or undirected
Edges can be labeled or unlabeled

- Edge labels are typically the cost associated with an edge
- e.g., Nodes are cities, edges are roads between cities, edge label is the length of road
There are several problems that are “naturally” graph problems

- Networking problems
- Route planning
- etc

Problems that don’t seem like graph problems can also be solved with graphs

- Register allocation using graph coloring
15-3: Connected Undirected Graph

- Path from every node to every other node

- Connected
Connected Undirected Graph

- Path from every node to every other node

- Connected
15-5: Connected Undirected Graph

- Path from every node to every other node

- Not Connected
15-6: Strongly Connected Graph

- Directed Path from every node to every other node
- Strongly Connected
15-7: **Strongly Connected Graph**

- Directed Path from every node to every other node

- Strongly Connected
15-8: **Strongly Connected Graph**

- Directed Path from every node to every other node

- Not Strongly Connected
15-9: Weakly Connected Graph

- Directed graph w/ connected backbone

- Weakly Connected
• Undirected cycles

• Contains an undirected cycle
Cycles in Graphs

- Undirected cycles

Contains an undirected cycle
15-12: Cycles in Graphs

- Undirected cycles

- Contains *no* undirected cycle
Cycles in Graphs

• Undirected cycles

• Contains *no* undirected cycle
15-14: Cycles in Graphs

- Directed cycles

- Contains a directed cycle
15-15: Cycles in Graphs

- Directed cycles

Contains a directed cycle
Cycles in Graphs

- Directed cycles

Contains a directed cycle
15-17: Cycles in Graphs

- Directed cycles

- Contains *no* directed cycle
Must a connected, undirected graph contain a cycle?
Must a connected, undirected graph contain a cycle?
- No.

Can an unconnected, undirected graph contain a cycle?
Must a connected, undirected graph contain a cycle?
 • No.

Can an unconnected, undirected graph contain a cycle?
 • Yes.

Must a strongly connected graph contain a cycle?
Must a connected, undirected graph contain a cycle?
• No.

Can an unconnected, undirected graph contain a cycle?
• Yes.

Must a strongly connected graph contain a cycle?
• Yes! (why?)
Cycles & Connectivity

- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
If a graph is weakly connected, and contains a cycle, must it be strongly connected?

No.
If a graph is weakly connected, and contains a cycle, must it be strongly connected?
• No.

If a graph contains a cycle which contains all nodes, must the graph be strongly connected?
If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 • No.

If a graph contains a cycle which contains all nodes, must the graph be strongly connected?
 • Yes. (why?)
• Adjacency Matrix
• Represent a graph with a two-dimensional array G
 • $G[i][j] = 1$ if there is an edge from node i to node j
 • $G[i][j] = 0$ if there is no edge from node i to node j
• If graph is undirected, matrix is symmetric
• Can represent edges labeled with a cost as well:
 • $G[i][j] = \text{cost of link between } i \text{ and } j$
 • If there is no direct link, $G[i][j] = \infty$
15-27: Adjacency Matrix

- Examples:

```
0 1 2 3
0 0 1 0 1
1 1 0 1 1
2 0 1 0 0
3 1 1 0 0
```
15-28: Adjacency Matrix

- **Examples:**

```
0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 0 0 0
3 1 0 0 0
```
15-29: Adjacency Matrix

- Examples:
15-30: Adjacency Matrix

- **Examples:**

![Diagram with edges and weights]

![Adjacency matrix with values]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>∞</td>
<td>7</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>∞</td>
<td>-2</td>
<td>∞</td>
</tr>
</tbody>
</table>
Adjacency List

Maintain a linked-list of the neighbors of every vertex.

- \(n \) vertices
- Array of \(n \) lists, one per vertex
- Each list \(i \) contains a list of all vertices adjacent to \(i \).
15-32: Adjacency List

- Examples:

```
0 1 2 3
1
2
3
```

```
0 -> 1 -> 3
1
2
3 -> 2
```

```
0 1 2 3
1
1
2
3
```

```
0 -> 1 -> 3
1
1
2
3
```
Examples:

```
0 1 2 3
```

Note – lists are not always sorted
Sparse vs. Dense

- Sparse graph – relatively few edges
- Dense graph – lots of edges
- Complete graph – contains all possible edges
 - These terms are fuzzy. “Sparse” in one context may or may not be “sparse” in a different context
Nodes with Labels

- If nodes are labeled with strings instead of integers
 - Internally, nodes are still represented as integers
 - Need to associate string labels & vertex numbers
 - Vertex number \rightarrow label
 - Label \rightarrow vertex number
• Vertex numbers \rightarrow labels
• Vertex numbers \rightarrow labels
 • Array
 • Vertex numbers are indices into array
 • Data in array is string label
Nodes with Labels

- Labels \rightarrow vertex numbers
15-39: **Nodes with Labels**

- Labels \rightarrow vertex numbers
 - Use a hash table
 - Key is the vertex label
 - Data is vertex number

Examples!
Directed Acyclic Graph, Vertices $v_1 \ldots v_n$

Create an ordering of the vertices

- If there a path from v_i to v_j, then v_i appears before v_j in the ordering

Example: Prerequisite chains
Which node(s) could be first in the topological ordering?
Topological Sort

- Which node(s) could be first in the topological ordering?
 - Node with no incident (incoming) edges
15-43: **Topological Sort**

- Pick a node v_k with no incident edges
- Add v_k to the ordering
- Remove v_k and all edges from v_k from the graph
- Repeat until all nodes are picked.
How can we find a node with no incident edges?

Count the incident edges of all nodes
for (i=0; i < NumberOfVertices; i++)
 NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)
 each node k adjacent to i
 NumIncident[k]++
for (i = 0; i < NumberofVertices; i++)
 NumIncident[i] = 0;

for (i = 0; i < NumberofVertices; i++)
 for (tmp = G[i]; tmp != null; tmp = tmp.next())
 NumIncident[tmp.neighbor()]++
15-47: **Topological Sort**

- Create NumIncident array
- Repeat
 - Search through NumIncident to find a vertex v with NumIncident[v] == 0
 - Add v to the ordering
 - Decrement NumIncident of all neighbors of v
 - Set NumIncident[v] = -1
- Until all vertices have been picked
In a graph with V vertices and E edges, how long does this version of topological sort take?
In a graph with \(V \) vertices and \(E \) edges, how long does this version of topological sort take?

\[\Theta(V^2 + E) = \Theta(V^2) \]

Since \(E \in O(V^2) \)
15-50: Topological Sort

- Where are we spending “extra” time
Where are we spending “extra” time

- Searching through NumIncident each time looking for a vertex with no incident edges
- Keep around a set of all nodes with no incident edges
- Remove an element \(v \) from this set, and add it to the ordering
- Decrement NumIncident for all neighbors of \(v \)
 - If NumIncident[\(k \)] is decremented to 0, add \(k \) to the set.
- How do we implement the set of nodes with no incident edges?
Topological Sort

- Where are we spending “extra” time
 - Searching through NumIncident each time looking for a vertex with no incident edges
 - Keep around a set of all nodes with no incident edges
 - Remove an element v from this set, and add it to the ordering
 - Decrement NumIncident for all neighbors of v
 - If NumIncident[k] is decremented to 0, add k to the set.
 - How do we implement the set of nodes with no incident edges?
 - Use a stack
Examples!!

- Graph
- Adjacency List
- NumIncident
- Stack