Data Structures and Algorithms
CS245-20175-15

Graphs

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

GE Graphs

® A graph consists of:

* A set of nodes or vertices (terms are
iInterchangable)

* A set of edges or arcs (terms are
interchangable)

® Edges in graph can be either directed or undirected

15-1: Graphs & Edges

® Edges can be labeled or unlabeled

* Edge labels are typically the cost assoctiated
with an edge

* e.9., Nodes are cities, edges are roads
between cities, edge label is the length of road

15-2: Graph Problems

® There are several problems that are “naturally”
graph problems

* Networking problems
* Route planning
* etc
® Problems that don’'t seem like graph problems can
also be solved with graphs
* Register allocation using graph coloring

15.3: Connected Undirected Graph

® Path from every node to every other node
1
2 / 3
4 5

® Connected

15-4: Connected Undirected Graph

® Path from every node to every other node

® Connected

15.5: Connected Undirected Graph

® Path from every node to every other node

2/\3 —

® Not Connected

15.6: Strongly Connected Graph

® Directed Path from every node to every other node

1— » 4

l

? «—— 39

® Strongly Connected

15.7: Strongly Connected Graph

® Directed Path from every node to every other node

® Strongly Connected

15-8: Strongly Connected Graph

® Directed Path from every node to every other node

® Not Strongly Connected

15.-0: Weakly Connected Graph

® Directed graph w/ connected backbone

® \Weakly Connected

15-10: Cycles in Graphs

® Undirected cycles
1
2 / 3
\ 4 5

® Contains an undirected cycle

15-11: Cycles in Graphs

® Undirected cycles
1
2 / 3
\ 4

® Contains an undirected cycle

5

15-12: Cycles in Graphs

® Undirected cycles

4 5

® Contains no undirected cycle

1513: Cycles in Graphs

® Undirected cycles

1 6

4 3 5

® Contains no undirected cycle

15-14: Cycles in Graphs
® Directed cycles

2’/A
\

® Contains a directed cycle

4 —» 3 5

15.15: Cycles in Graphs

® Directed cycles

4 —» 3 5

® Contains a directed cycle

15-16: Cycles in Graphs

® Directed cycles

l——» 4

/! l

2 «—— 3¢5

® Contains a directed cycle

15-17: Cycles in Graphs

® Directed cycles

4 —» 3 5

® Contains no directed cycle

15.18: Cycles & Connectivity

® Must a connected, undirected graph contain a
cycle?

15-19: Cycles & Connectivity

® Must a connected, undirected graph contain a
cycle?
* No.

® Can an unconnected, undirected graph contain a
cycle?

15.20: Cycles & Connectivity

® Must a connected, undirected graph contain a
cycle?
* No.
® Can an unconnected, undirected graph contain a
cycle?
* Yes.

® Must a strongly connected graph contain a cycle?

15.21: Cycles & Connectivity

® Must a connected, undirected graph contain a
cycle?
* No.
® Can an unconnected, undirected graph contain a
cycle?
* Yes.
® Must a strongly connected graph contain a cycle?
e Yes! (why?)

15-22: Cycles & Connectivity

® |f a graph is weakly connected, and contains a
cycle, must it be strongly connected?

15.23: Cycles & Connectivity

® |f a graph is weakly connected, and contains a
cycle, must it be strongly connected?

* No.

15-24: Cycles & Connectivity

® |f a graph is weakly connected, and contains a
cycle, must it be strongly connected?

* No.

® |f a graph contains a cycle which contains all
nodes, must the graph be strongly connected?

15.25: Cycles & Connectivity

® |f a graph is weakly connected, and contains a
cycle, must it be strongly connected?

3 \\[o}
® |f a graph contains a cycle which contains all
nodes, must the graph be strongly connected?
* Yes. (why?)

15-26: Graph Representations

® Adjacency Matrix

® Represent a graph with a two-dimensional array G

e (G|1]|y] = 1 if there is an edge from node i to
node j

e (7|1]|7] = O if there is no edge from node i to
node J

® |f graph is undirected, matrix is symmetric

® Can represent edges labeled with a cost as well:
e (7|i][j] = cost of link between i and j
e If there is no direct link, G|i][j] = o0

15-27: Adjacency Matrix

® Examples:
0 1
0
00
2 3 1] 1
210
3|1

OO =IO M

OO0 == W

15-28: Adjacency Matrix

® Examples:
0= =1
Y 0
00
2 3 1] 1
210
3|1

OO0 Ol = =

OO =IO M

OO =IO W

15-20: Adjacency Matrix

® Examples:
O« <_1>
0 1 2 3
2 3 0 0(0/0]0
Q 11171010
20100
3/0[{0/0 1

15-.30: Adjacency Matrix

® Examples:
4
O 1
S 7

O 1 2 3
> 3 0joo|o0|o0| b
-2 114 |oc0| 00| 00
21 00| 7 |00 | 00
30|00 | -2 |00

15-31: Graph Representations

® Adjacency List
® Maintain a linked-list of the neighbors of every
vertex.
* n vertices
* Array of n lists, one per vertex

e Each list 2 contains a list of all vertices adjacent
to .

15-32: Adjacency List

® Examples:

0 > 1

w N P O

' 3

15-33: Adjacency List

® Examples:

' ¥ v ¥

w N P O
|

N [|W O ||

2 3

® Note — lists are not always sorted

15-34: Sparse vs. Dense

® Sparse graph — relatively few edges
® Dense graph — lots of edges

® Complete graph — contains all possible edges

 These terms are fuzzy. “Sparse” in one context
may or may not be “sparse” in a different
context

15-35: Nodes with Labels

® |f nodes are labeled with strings instead of integers

* Internally, nodes are still represented as
integers

* Need to associate string labels & vertex
numbers
- Vertex number — label
- Label — vertex number

15-36: Nodes with Labels

® \ertex numbers — labels

15-37: Nodes with Labels

® \ertex numbers — labels

e Array
- Vertex numbers are indices into array
- Data in array is string label

15-38: Nodes with Labels

® | abels — vertex numbers

15-39: Nodes with Labels

® | abels — vertex numbers

e Use a hash table
- Key is the vertex label
- Data is vertex number

Examples!

15-40: Topological Sort

® Directed Acyclic Graph, Vertices v; ... v,

® Create an ordering of the vertices

* |f there a path from v; to v;, then v; appears
before v; in the ordering

® Example: Prerequisite chains

15-41: Jopological Sort

® Which node(s) could be first in the topological
ordering?

15-42: Jopological Sort

® Which node(s) could be first in the topological
ordering?

* Node with no incident (incoming) edges

15-43: Jopological Sort

® Pick a node v, with no incident edges

® Add v, to the ordering

® Remove v, and all edges from v, from the graph
® Repeat until all nodes are picked.

15-44: Topological Sort

® How can we find a node with no incident edges?
® Count the incident edges of all nodes

15-45: Jopological Sort

for (i=0; i < NumberQOfVertices; i++)
NumIncident[i] = O;

for(i=0; i < NumberOfVertices; i++)
each node k adjacent to 1
NumIncident [k]++

15-46: Jopological Sort

for(i=0; i < NumberOfVertices; i++)
NumIncident[i] = O;

for(i=0; i < NumberOfVertices; i++)
for (tmp=G[i]; tmp !'= null; tmp=tmp.next())
NumIncident [tmp.neighbor ()] ++

15-47: Topological Sort

® Create Numlincident array

® Repeat

e Search through Numlincident to find a vertex v
with Numlincident[v] ==

* Add v to the ordering
* Decrement Numincident of all neighbors of v
e Set Numlincident[v] = -1

® Until all vertices have been picked

15-48: Jopological Sort

® |n a graph with V' vertices and £ edges, how long
does this version of topological sort take?

15-49: Jopological Sort

® |n a graph with V' vertices and £ edges, how long
does this version of topological sort take?
e O(V2+ FE) =0(V?)
- Since £ € O(V?)

15-50: 1opological Sort

® Where are we spending “extra” time

15-51: Jopological Sort

® Where are we spending “extra” time

Searching through Numlncident each time
looking for a vertex with no incident edges

Keep around a set of all nodes with no incident
edges

Remove an element v from this set, and add it
to the ordering

Decrement Numincident for all neighbors of v
- If Numlincident[k] is decremented to 0, add £
to the set.

How do we implement the set of nodes with no
iIncident edges?

15-52: Jopological Sort

® Where are we spending “extra” time

Searching through Numlncident each time
looking for a vertex with no incident edges

Keep around a set of all nodes with no incident
edges

Remove an element v from this set, and add it
to the ordering

Decrement Numincident for all neighbors of v
- If Numlincident[k] is decremented to 0, add £
to the set.

How do we implement the set of nodes with no
iIncident edges?
- Use a stack

15-53: Jopological Sort

® Examples!!
e Graph
e Adjacency List
 Numincident
e Stack

	{small lecturenumber -	heblocknumber :} Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graphs & Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Connected Undirected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Strongly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Weakly Connected Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles in Graphsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cycles & Connectivityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Representationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Matrixaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Graph Representationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adjacency Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sparse vs. Denseaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nodes with Labelsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Topological Sortaddtocounter {blocknumber}{1}

