15-0: **Graphs**

- A graph consists of:
 - A set of **nodes** or **vertices** (terms are interchangeable)
 - A set of **edges** or **arcs** (terms are interchangeable)
- Edges in graph can be either directed or undirected

15-1: **Graphs & Edges**

- Edges can be labeled or unlabeled
 - Edge labels are typically the **cost** associated with an edge
 - e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: **Graph Problems**

- There are several problems that are “naturally” graph problems
 - Networking problems
 - Route planning
 - etc
- Problems that don’t **seem** like graph problems can also be solved with graphs
 - Register allocation using graph coloring

15-3: **Connected Undirected Graph**

- Path from every node to every other node

```
       1
      / \
   2     3
  /     / \
4     5
```

- Connected

15-4: **Connected Undirected Graph**

- Path from every node to every other node
• Connected

15-5: **Connected Undirected Graph**

• Path from every node to every other node

• *Not* Connected

15-6: **Strongly Connected Graph**

• Directed Path from every node to every other node

• Strongly Connected

15-7: **Strongly Connected Graph**

• Directed Path from every node to every other node
• Strongly Connected

15-8: **Strongly Connected Graph**

• Directed Path from every node to every other node

• Not Strongly Connected

15-9: **Weakly Connected Graph**

• Directed graph w/ connected backbone

• Weakly Connected
15-10: **Cycles in Graphs**
- Undirected cycles

![Diagram](image1)
- Contains an undirected cycle

15-11: **Cycles in Graphs**
- Undirected cycles

![Diagram](image2)
- Contains an undirected cycle

15-12: **Cycles in Graphs**
- Undirected cycles

![Diagram](image3)
• Contains no undirected cycle

15-13: Cycles in Graphs

• Undirected cycles

15-14: Cycles in Graphs

• Contains no undirected cycle

15-14: Cycles in Graphs

• Directed cycles

15-15: Cycles in Graphs

• Contains a directed cycle

15-15: Cycles in Graphs

• Directed cycles
- Contains a directed cycle

15-16: **Cycles in Graphs**

- Directed cycles

- Contains a directed cycle

15-17: **Cycles in Graphs**

- Directed cycles

- Contains no directed cycle

15-18: **Cycles & Connectivity**

- Must a connected, undirected graph contain a cycle?

15-19: **Cycles & Connectivity**

- Must a connected, undirected graph contain a cycle?
 - No.

- Can an unconnected, undirected graph contain a cycle?

15-20: **Cycles & Connectivity**
Must a connected, undirected graph contain a cycle?
- No.

Can an unconnected, undirected graph contain a cycle?
- Yes.

Must a strongly connected graph contain a cycle?
- Yes! (why?)

15-21: Cycles & Connectivity
- Must a connected, undirected graph contain a cycle?
 - No.
- Can an unconnected, undirected graph contain a cycle?
 - Yes.
- Must a strongly connected graph contain a cycle?
 - Yes! (why?)

15-22: Cycles & Connectivity
- If a graph is weakly connected, and contains a cycle, must it be strongly connected?

15-23: Cycles & Connectivity
- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 - No.

15-24: Cycles & Connectivity
- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 - No.
- If a graph contains a cycle which contains all nodes, must the graph be strongly connected?

15-25: Cycles & Connectivity
- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 - No.
- If a graph contains a cycle which contains all nodes, must the graph be strongly connected?
 - Yes. (why?)

15-26: Graph Representations
- Adjacency Matrix
 - Represent a graph with a two-dimensional array G
 - $G[i][j] = 1$ if there is an edge from node i to node j
- $G[i][j] = 0$ if there is no edge from node i to node j
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
 - $G[i][j] =$ cost of link between i and j
 - If there is no direct link, $G[i][j] = \infty$

15-27: **Adjacency Matrix**

- Examples:

```
0 1
2 3
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

15-28: **Adjacency Matrix**

- Examples:

```
0 1
2 3
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

15-29: **Adjacency Matrix**

- Examples:

```
0 1
2 3
```

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
15-30: **Adjacency Matrix**
- Examples:

```
0 1 2 3
0  \infty \infty \infty 5
1  4 \infty \infty
2  \infty 7 \infty \infty
3  \infty \infty -2 \infty
```

15-31: **Graph Representations**
- Adjacency List
 - Maintain a linked-list of the neighbors of every vertex.
 - \(n \) vertices
 - Array of \(n \) lists, one per vertex
 - Each list \(i \) contains a list of all vertices adjacent to \(i \).

15-32: **Adjacency List**
- Examples:

```
0       1       3
0       \infty \infty
1       \infty
2       \infty
3       \infty
```

15-33: **Adjacency List**
- Examples:

```
0 1 2 3
0  \infty \infty \infty 3
1  \infty \infty
2  \infty
3  \infty
```

```
0       1
0       \infty
1       \infty
2       \infty
3       \infty
```

```
0 1 2 3
0  \infty
1  \infty
2  \infty
3  \infty
```
• Note – lists are not always sorted

15-34: **Sparse vs. Dense**

• Sparse graph – relatively few edges
• Dense graph – lots of edges
• Complete graph – contains all possible edges
 • These terms are fuzzy. “Sparse” in one context may or may not be “sparse” in a different context

15-35: **Nodes with Labels**

• If nodes are labeled with strings instead of integers
 • Internally, nodes are still represented as integers
 • Need to associate string labels & vertex numbers
 • Vertex number → label
 • Label → vertex number

15-36: **Nodes with Labels**

• Vertex numbers → labels

15-37: **Nodes with Labels**

• Vertex numbers → labels
 • Array
 • Vertex numbers are indices into array
 • Data in array is string label

15-38: **Nodes with Labels**

• Labels → vertex numbers

15-39: **Nodes with Labels**

• Labels → vertex numbers
 • Use a hash table
 • Key is the vertex label
 • Data is vertex number

Examples!

15-40: **Topological Sort**

• Directed Acyclic Graph, Vertices \(v_1 \ldots v_n \)
• Create an ordering of the vertices
 • If there a path from \(v_i \) to \(v_j \), then \(v_i \) appears before \(v_j \) in the ordering
• Example: Prerequisite chains
15-41: **Topological Sort**

- Which node(s) could be first in the topological ordering?

15-42: **Topological Sort**

- Which node(s) could be first in the topological ordering?
 - Node with no incident (incoming) edges

15-43: **Topological Sort**

- Pick a node \(v_k \) with no incident edges
- Add \(v_k \) to the ordering
- Remove \(v_k \) and all edges from \(v_k \) from the graph
- Repeat until all nodes are picked.

15-44: **Topological Sort**

- How can we find a node with no incident edges?
- Count the incident edges of all nodes

15-45: **Topological Sort**

```java
for (i=0; i < NumberOfVertices; i++)
    NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)
    for each node k adjacent to i
        NumIncident[k]++
```

15-46: **Topological Sort**

```java
for(i=0; i < NumberOfVertices; i++)
    NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)
    for(tmp=G[i]; tmp != null; tmp=tmp.next())
        NumIncident[tmp.neighbor()]++
```

15-47: **Topological Sort**

- Create NumIncident array
- Repeat
 - Search through NumIncident to find a vertex \(v \) with NumIncident[\(v \)] == 0
 - Add \(v \) to the ordering
 - Decrement NumIncident of all neighbors of \(v \)
 - Set NumIncident[\(v \)] = -1
• Until all vertices have been picked

15-48: **Topological Sort**

• In a graph with V vertices and E edges, how long does this version of topological sort take?

15-49: **Topological Sort**

• In a graph with V vertices and E edges, how long does this version of topological sort take?

 • $\Theta(V^2 + E) = \Theta(V^2)$

 • Since $E \in O(V^2)$

15-50: **Topological Sort**

• Where are we spending “extra” time

15-51: **Topological Sort**

• Where are we spending “extra” time

 • Searching through NumIncident each time looking for a vertex with no incident edges

 • Keep around a set of all nodes with no incident edges

 • Remove an element v from this set, and add it to the ordering

 • Decrement NumIncident for all neighbors of v

 • If NumIncident[k] is decremented to 0, add k to the set.

 • How do we implement the set of nodes with no incident edges?

15-52: **Topological Sort**

• Where are we spending “extra” time

 • Searching through NumIncident each time looking for a vertex with no incident edges

 • Keep around a set of all nodes with no incident edges

 • Remove an element v from this set, and add it to the ordering

 • Decrement NumIncident for all neighbors of v

 • If NumIncident[k] is decremented to 0, add k to the set.

 • How do we implement the set of nodes with no incident edges?

 • Use a stack

15-53: **Topological Sort**

• Examples!!

 • Graph

 • Adjacency List

 • NumIncident

 • Stack