
CS245-2017S-15 Graphs 1

15-0: Graphs

• A graph consists of:

• A set of nodes or vertices (terms are interchangable)

• A set of edges or arcs (terms are interchangable)

• Edges in graph can be either directed or undirected

15-1: Graphs & Edges

• Edges can be labeled or unlabeled

• Edge labels are typically the cost assoctiated with an edge

• e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: Graph Problems

• There are several problems that are “naturally” graph problems

• Networking problems

• Route planning

• etc

• Problems that don’t seem like graph problems can also be solved with graphs

• Register allocation using graph coloring

15-3: Connected Undirected Graph

• Path from every node to every other node

1

2 3

4 5

• Connected

15-4: Connected Undirected Graph

• Path from every node to every other node



CS245-2017S-15 Graphs 2

1

2 3

4 5

• Connected

15-5: Connected Undirected Graph

• Path from every node to every other node

1

2 3

4 5

• Not Connected

15-6: Strongly Connected Graph

• Directed Path from every node to every other node

1

2 3

4

5

• Strongly Connected

15-7: Strongly Connected Graph

• Directed Path from every node to every other node



CS245-2017S-15 Graphs 3

1

2 3

4

5

• Strongly Connected

15-8: Strongly Connected Graph

• Directed Path from every node to every other node

1

2 3

4

5

• Not Strongly Connected

15-9: Weakly Connected Graph

• Directed graph w/ connected backbone

1

2 3

4

5

• Weakly Connected



CS245-2017S-15 Graphs 4

15-10: Cycles in Graphs

• Undirected cycles

1

2 3

4 5

• Contains an undirected cycle

15-11: Cycles in Graphs

• Undirected cycles

1

2 3

4 5

6

• Contains an undirected cycle

15-12: Cycles in Graphs

• Undirected cycles

1

2 3

4 5

6



CS245-2017S-15 Graphs 5

• Contains no undirected cycle

15-13: Cycles in Graphs

• Undirected cycles

1

2

34 5

6

• Contains no undirected cycle

15-14: Cycles in Graphs

• Directed cycles

1

2

34 5

6

• Contains a directed cycle

15-15: Cycles in Graphs

• Directed cycles

1

2

34 5

6



CS245-2017S-15 Graphs 6

• Contains a directed cycle

15-16: Cycles in Graphs

• Directed cycles

1

2 3

4

5

• Contains a directed cycle

15-17: Cycles in Graphs

• Directed cycles

1

2

34 5

6

• Contains no directed cycle

15-18: Cycles & Connectivity

• Must a connected, undirected graph contain a cycle?

15-19: Cycles & Connectivity

• Must a connected, undirected graph contain a cycle?

• No.

• Can an unconnected, undirected graph contain a cycle?

15-20: Cycles & Connectivity



CS245-2017S-15 Graphs 7

• Must a connected, undirected graph contain a cycle?

• No.

• Can an unconnected, undirected graph contain a cycle?

• Yes.

• Must a strongly connected graph contain a cycle?

15-21: Cycles & Connectivity

• Must a connected, undirected graph contain a cycle?

• No.

• Can an unconnected, undirected graph contain a cycle?

• Yes.

• Must a strongly connected graph contain a cycle?

• Yes! (why?)

15-22: Cycles & Connectivity

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?

15-23: Cycles & Connectivity

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?

• No.

15-24: Cycles & Connectivity

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?

• No.

• If a graph contains a cycle which contains all nodes, must the graph be strongly connected?

15-25: Cycles & Connectivity

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?

• No.

• If a graph contains a cycle which contains all nodes, must the graph be strongly connected?

• Yes. (why?)

15-26: Graph Representations

• Adjacency Matrix

• Represent a graph with a two-dimensional array G

• G[i][j] = 1 if there is an edge from node i to node j



CS245-2017S-15 Graphs 8

• G[i][j] = 0 if there is no edge from node i to node j

• If graph is undirected, matrix is symmetric

• Can represent edges labeled with a cost as well:

• G[i][j] = cost of link between i and j

• If there is no direct link, G[i][j] = ∞

15-27: Adjacency Matrix

• Examples:

0 1

2 3
0 1 2 3

0 0 1 0 1

1 1 0 1 1

2 0 1 0 0

3 1 1 0 0

15-28: Adjacency Matrix

• Examples:

0 1

2 3
0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 0 0 0

3 1 0 0 0

15-29: Adjacency Matrix

• Examples:

0 1

2 3 0 1 2 3

0 0 0 0 0

1 1 1 0 0

2 0 1 0 0

3 0 0 0 1



CS245-2017S-15 Graphs 9

15-30: Adjacency Matrix

• Examples:

0 1

2 3

4

5 7

-2

0 1 2 3

0 ∞ ∞ ∞ 5

1 4 ∞ ∞ ∞

2 ∞ 7 ∞ ∞

3 ∞ ∞ -2 ∞

15-31: Graph Representations

• Adjacency List

• Maintain a linked-list of the neighbors of every vertex.

• n vertices

• Array of n lists, one per vertex

• Each list i contains a list of all vertices adjacent to i.

15-32: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1 3

1

2

15-33: Adjacency List

• Examples:

0 1

2 3

0

1

2

3

1

3

2

0 3

1



CS245-2017S-15 Graphs 10

• Note – lists are not always sorted

15-34: Sparse vs. Dense

• Sparse graph – relatively few edges

• Dense graph – lots of edges

• Complete graph – contains all possible edges

• These terms are fuzzy. “Sparse” in one context may or may not be “sparse” in a different context

15-35: Nodes with Labels

• If nodes are labeled with strings instead of integers

• Internally, nodes are still represented as integers

• Need to associate string labels & vertex numbers

• Vertex number → label

• Label → vertex number

15-36: Nodes with Labels

• Vertex numbers → labels

15-37: Nodes with Labels

• Vertex numbers → labels

• Array

• Vertex numbers are indices into array

• Data in array is string label

15-38: Nodes with Labels

• Labels → vertex numbers

15-39: Nodes with Labels

• Labels → vertex numbers

• Use a hash table

• Key is the vertex label

• Data is vertex number

Examples! 15-40: Topological Sort

• Directed Acyclic Graph, Vertices v1 . . . vn

• Create an ordering of the vertices

• If there a path from vi to vj , then vi appears before vj in the ordering

• Example: Prerequisite chains



CS245-2017S-15 Graphs 11

15-41: Topological Sort

• Which node(s) could be first in the topological ordering?

15-42: Topological Sort

• Which node(s) could be first in the topological ordering?

• Node with no incident (incoming) edges

15-43: Topological Sort

• Pick a node vk with no incident edges

• Add vk to the ordering

• Remove vk and all edges from vk from the graph

• Repeat until all nodes are picked.

15-44: Topological Sort

• How can we find a node with no incident edges?

• Count the incident edges of all nodes

15-45: Topological Sort

for (i=0; i < NumberOfVertices; i++)

NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)

each node k adjacent to i

NumIncident[k]++

15-46: Topological Sort

for(i=0; i < NumberOfVertices; i++)

NumIncident[i] = 0;

for(i=0; i < NumberOfVertices; i++)

for(tmp=G[i]; tmp != null; tmp=tmp.next())

NumIncident[tmp.neighbor()]++

15-47: Topological Sort

• Create NumIncident array

• Repeat

• Search through NumIncident to find a vertex v with NumIncident[v] == 0

• Add v to the ordering

• Decrement NumIncident of all neighbors of v

• Set NumIncident[v] = -1



CS245-2017S-15 Graphs 12

• Until all vertices have been picked

15-48: Topological Sort

• In a graph with V vertices and E edges, how long does this version of topological sort take?

15-49: Topological Sort

• In a graph with V vertices and E edges, how long does this version of topological sort take?

• Θ(V 2 + E) = Θ(V 2)

• Since E ∈ O(V 2)

15-50: Topological Sort

• Where are we spending “extra” time

15-51: Topological Sort

• Where are we spending “extra” time

• Searching through NumIncident each time looking for a vertex with no incident edges

• Keep around a set of all nodes with no incident edges

• Remove an element v from this set, and add it to the ordering

• Decrement NumIncident for all neighbors of v

• If NumIncident[k] is decremented to 0, add k to the set.

• How do we implement the set of nodes with no incident edges?

15-52: Topological Sort

• Where are we spending “extra” time

• Searching through NumIncident each time looking for a vertex with no incident edges

• Keep around a set of all nodes with no incident edges

• Remove an element v from this set, and add it to the ordering

• Decrement NumIncident for all neighbors of v

• If NumIncident[k] is decremented to 0, add k to the set.

• How do we implement the set of nodes with no incident edges?

• Use a stack

15-53: Topological Sort

• Examples!!

• Graph

• Adjacency List

• NumIncident

• Stack


