15-0: **Graphs**

- A graph consists of:
 - A set of **nodes** or **vertices** (terms are interchangeable)
 - A set of **edges** or **arcs** (terms are interchangeable)
- Edges in graph can be either directed or undirected

15-1: **Graphs & Edges**

- Edges can be labeled or unlabeled
 - Edge labels are typically the *cost* associated with an edge
 - e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: **Graph Problems**

- There are several problems that are “naturally” graph problems
 - Networking problems
 - Route planning
 - etc
- Problems that don’t *seem* like graph problems can also be solved with graphs
 - Register allocation using graph coloring

15-3: **Connected Undirected Graph**

- Path from every node to every other node

```
  1
 /|
/  \
  2 3
/   \
4     5
```

- Connected

15-4: **Connected Undirected Graph**

- Path from every node to every other node
15-5: Connected Undirected Graph

- Path from every node to every other node

15-6: Strongly Connected Graph

- Directed Path from every node to every other node

15-7: Strongly Connected Graph

- Directed Path from every node to every other node
• Strongly Connected

15-8: **Strongly Connected Graph**

• Directed Path from every node to every other node

• Not Strongly Connected

15-9: **Weakly Connected Graph**

• Directed graph w/ connected backbone

• Weakly Connected
15-10: **Cycles in Graphs**
- Undirected cycles

```
1
 /|
/  |
2 - 3
 |  |
|   |
4 - 5
```
- Contains an undirected cycle

15-11: **Cycles in Graphs**
- Undirected cycles

```
1  6
 |
|
2 - 3
 |
|   |
4   5
```
- Contains an undirected cycle

15-12: **Cycles in Graphs**
- Undirected cycles

```
1  6
 |
|
2 - 3
 |
|   |
4   5
```
- Contains no undirected cycle

15-13: Cycles in Graphs
- Undirected cycles

15-14: Cycles in Graphs
- Directed cycles

- Contains a directed cycle

15-15: Cycles in Graphs
- Directed cycles
• Contains a directed cycle

15-16: Cycles in Graphs

• Directed cycles

15-17: Cycles in Graphs

• Directed cycles

• Contains no directed cycle

15-18: Cycles & Connectivity

• Must a connected, undirected graph contain a cycle?

15-19: Cycles & Connectivity

• Must a connected, undirected graph contain a cycle?
 • No.

• Can an unconnected, undirected graph contain a cycle?

15-20: Cycles & Connectivity
• Must a connected, undirected graph contain a cycle?
 • No.

• Can an unconnected, undirected graph contain a cycle?
 • Yes.

• Must a strongly connected graph contain a cycle?
 • Yes! (why?)

15-21: **Cycles & Connectivity**

• Must a connected, undirected graph contain a cycle?
 • No.

• Can an unconnected, undirected graph contain a cycle?
 • Yes.

• Must a strongly connected graph contain a cycle?
 • Yes! (why?)

15-22: **Cycles & Connectivity**

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?

15-23: **Cycles & Connectivity**

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 • No.

15-24: **Cycles & Connectivity**

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 • No.

• If a graph contains a cycle which contains all nodes, must the graph be strongly connected?

15-25: **Cycles & Connectivity**

• If a graph is weakly connected, and contains a cycle, must it be strongly connected?
 • No.

• If a graph contains a cycle which contains all nodes, must the graph be strongly connected?
 • Yes. (why?)

15-26: **Graph Representations**

• Adjacency Matrix

• Represent a graph with a two-dimensional array G
 • $G[i][j] = 1$ if there is an edge from node i to node j
- \(G[i][j] = 0 \) if there is no edge from node \(i \) to node \(j \)
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
 - \(G[i][j] = \text{cost of link between } i \text{ and } j \)
 - If there is no direct link, \(G[i][j] = \infty \)

15-27: Adjacency Matrix

- Examples:

```
0 1
2 3
```

```
0 1 0 1
1 0 1 1
2 0 1 0 0
3 1 1 0 0
```

15-28: Adjacency Matrix

- Examples:

```
0 1
2 3
```

```
0 1 0 0
1 0 1 1
2 0 0 0 0
3 1 0 0 0
```

15-29: Adjacency Matrix

- Examples:

```
0 1
2 3
```

```
0 0 0 0
1 1 0 0
2 0 1 0 0
3 0 0 0 1
```
15-30: **Adjacency Matrix**

- Examples:

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\infty & \infty & 2 & 3 \\
1 & \infty & \infty & \infty \\
\infty & \infty & \infty & \infty \\
\end{array}
\]

15-31: **Graph Representations**

- Adjacency List
 - Maintain a linked-list of the neighbors of every vertex.

 - \(n \) vertices
 - Array of \(n \) lists, one per vertex
 - Each list \(i \) contains a list of all vertices adjacent to \(i \).

15-32: **Adjacency List**

- Examples:

15-33: **Adjacency List**

- Examples:
• Note – lists are not always sorted

15-34: **Sparse vs. Dense**

- Sparse graph – relatively few edges
- Dense graph – lots of edges
- Complete graph – contains all possible edges
 - These terms are fuzzy. “Sparse” in one context may or may not be “sparse” in a different context

15-35: **Nodes with Labels**

- If nodes are labeled with strings instead of integers
 - Internally, nodes are still represented as integers
 - Need to associate string labels & vertex numbers
 - Vertex number → label
 - Label → vertex number

15-36: **Nodes with Labels**

- Vertex numbers → labels

15-37: **Nodes with Labels**

- Vertex numbers → labels
 - Array
 - Vertex numbers are indices into array
 - Data in array is string label

15-38: **Nodes with Labels**

- Labels → vertex numbers

15-39: **Nodes with Labels**

- Labels → vertex numbers
 - Use a hash table
 - Key is the vertex label
 - Data is vertex number

Examples! 15-40: **Topological Sort**

- Directed Acyclic Graph, Vertices \(v_1 \ldots v_n\)
- Create an ordering of the vertices
 - If there a path from \(v_i\) to \(v_j\), then \(v_i\) appears before \(v_j\) in the ordering
- Example: Prerequisite chains
15-41: **Topological Sort**

- Which node(s) could be first in the topological ordering?

15-42: **Topological Sort**

- Which node(s) could be first in the topological ordering?
 - Node with no incident (incoming) edges

15-43: **Topological Sort**

- Pick a node v_k with no incident edges
- Add v_k to the ordering
- Remove v_k and all edges from v_k from the graph
- Repeat until all nodes are picked.

15-44: **Topological Sort**

- How can we find a node with no incident edges?
- Count the incident edges of all nodes

15-45: **Topological Sort**

```java
for (i=0; i < NumberOfVertices; i++)
    NumIncident[i] = 0;
for(i=0; i < NumberOfVertices; i++)
    for(tmp=G[i]; tmp != null; tmp=tmp.next())
        NumIncident[tmp.neighbor()]++
```

15-46: **Topological Sort**

```java
for(i=0; i < NumberOfVertices; i++)
    NumIncident[i] = 0;
for(i=0; i < NumberOfVertices; i++)
    for(tmp=G[i]; tmp != null; tmp=tmp.next())
        NumIncident[tmp.neighbor()]++
```

15-47: **Topological Sort**

- Create NumIncident array
- Repeat
 - Search through NumIncident to find a vertex v with $\text{NumIncident}[v] == 0$
 - Add v to the ordering
 - Decrement NumIncident of all neighbors of v
 - Set NumIncident[v] = -1
• Until all vertices have been picked

15-48: **Topological Sort**

• In a graph with V vertices and E edges, how long does this version of topological sort take?

15-49: **Topological Sort**

• In a graph with V vertices and E edges, how long does this version of topological sort take?
 • $\Theta(V^2 + E) = \Theta(V^2)$
 • Since $E \in O(V^2)$

15-50: **Topological Sort**

• Where are we spending “extra” time

15-51: **Topological Sort**

• Where are we spending “extra” time
 • Searching through NumIncident each time looking for a vertex with no incident edges
 • Keep around a set of all nodes with no incident edges
 • Remove an element v from this set, and add it to the ordering
 • Decrement NumIncident for all neighbors of v
 • If NumIncident[k] is decremented to 0, add k to the set.
 • How do we implement the set of nodes with no incident edges?

15-52: **Topological Sort**

• Where are we spending “extra” time
 • Searching through NumIncident each time looking for a vertex with no incident edges
 • Keep around a set of all nodes with no incident edges
 • Remove an element v from this set, and add it to the ordering
 • Decrement NumIncident for all neighbors of v
 • If NumIncident[k] is decremented to 0, add k to the set.
 • How do we implement the set of nodes with no incident edges?
 • Use a stack

15-53: **Topological Sort**

• Examples!!
 • Graph
 • Adjacency List
 • NumIncident
 • Stack