Data Structures and Algorithms
CS245-2016S-17

Shortest Path
Dijkstra’s Algorithm

David Galles

Department of Computer Science
University of San Francisco
Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in G.

- Undirected graph is a special case of a directed graph, with symmetric edges.

- Least-cost path may not be the path containing the fewest edges.
 - “shortest path” == “least cost path”
 - “path containing fewest edges” = “path containing fewest edges”
Shortest Path Example

• Shortest path \neq path containing fewest edges

• Shortest Path from A to E?
Shortest Path Example

- Shortest path ≠ path containing fewest edges

Shortest Path from A to E:
- A, B, C, D, E
To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph.

Why?
To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph.

- To find the shortest path from x to y, we need to find the shortest path from x to all nodes on the path from x to y.

- Worst case, all nodes will be on the path.
17-5: Single Source Shortest Path

- If all edges have unit weight ...
17-6: Single Source Shortest Path

- If all edges have unit weight, we can use Breadth First Search to compute the shortest path.
- BFS Spanning Tree contains shortest path to each node in the graph.
 - Need to do some more work to create & save BFS spanning tree.
- When edges have differing weights, this obviously will not work.
Divide the vertices into two sets:
- Vertices whose shortest path from the initial vertex is known
- Vertices whose shortest path from the initial vertex is not known

Initially, only the initial vertex is known

Move vertices one at a time from the unknown set to the known set, until all vertices are known
Start with the vertex A
Known vertices are circled in red

We can now extend the known set by 1 vertex
• Why is it safe to add D, with cost 1?
Why is it safe to add D, with cost 1?
- Could we do better with a more roundabout path?
Why is it safe to add D, with cost 1?

- Could we do better with a more roundabout path?
- No – to get to any other node will cost at least 1
- No negative edge weights, can’t do better than 1
We can now add another vertex to our known list ...
How do we know that we could not get to B cheaper than by going through D?
How do we know that we could not get to B cheaper than by going through D?

- Costs 1 to get to D
- Costs at least 2 to get anywhere from D
 - Cost at least $(1+2 = 3)$ to get to B through D
17-16: Single Source Shortest Path

- Next node we can add ...
• (We also could have added E for this step)
• Next vertex to add to Known ...
Single Source Shortest Path

- **Cost to add F is 8 (through C)**
- **Cost to add G is 5 (through D)**
17-19: Single Source Shortest Path

- Last node ...

Node	Distance
A | 0
B | 2
C | 3
D | 1
E | 3
F | 5
G | 5
We now know the length of the shortest path from A to all other vertices in the graph.
Dijkstra’s Algorithm

- Keep a table that contains, for each vertex
 - Is the distance to that vertex known?
 - What is the best distance we’ve found so far?
- Repeat:
 - Pick the smallest unknown distance
 - mark it as known
 - update the distance of all unknown neighbors of that node
- Until all vertices are known
17-22: Dijkstra’s Algorithm Example

The diagram illustrates a graph with nodes A, B, C, D, E, and F, and edge weights labeled on the edges. The table shows the known status and distance from node A for each node:

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>false</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>∞</td>
</tr>
<tr>
<td>C</td>
<td>false</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>∞</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>∞</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

Node	Known	Distance
A | true | 0 |
B | false | 7 |
C | false | 5 |
D | false | ∞ |
E | false | ∞ |
F | false | 1 |
17-24: Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>false</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>8</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

- **Nodes:** A, B, C, D, E, F
- **Known Distance:**
 - A: true, 0
 - B: false, 7
 - C: false, 4
 - D: false, 8
 - E: true, 3
 - F: true, 1
- **Edges and Weights:**
 - A to B: 1, B to D: 1, C to B: 3, D to F: 7, B to C: 7, F to E: 2, E to A: 5, A to C: 1, B to E: 1, C to E: 2

The diagram shows the network of nodes and edges, with distances and know status for each node.
Dijkstra’s Algorithm Example

Node	Known	Distance
A | true | 0
B | false | 5
C | true | 4
D | false | 6
E | true | 3
F | true | 1
Dijkstra’s Algorithm Example

The image illustrates a graph with nodes A, B, C, D, E, and F, and edges with weights as indicated. The table below shows the known nodes and their distances from the starting node A:

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>true</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>true</td>
<td>1</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

Node	Known	Distance
A | true | 0
B | true | 5
C | true | 4
D | true | 6
E | true | 3
F | true | 1
17-29: Dijkstra’s Algorithm

- After Dijkstra’s algorithm is complete:
 - We know the *length* of the shortest path
 - We do not know *what* the shortest path is
- How can we modify Dijkstra’s algorithm to compute the path?
After Dijkstra’s algorithm is complete:
- We know the length of the shortest path
- We do not know what the shortest path is

How can we modify Dijkstra’s algorithm to compute the path?
- Store not only the distance, but the immediate parent that led to this distance
Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>false</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>false</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>false</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>false</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

Table

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

![Graph Diagram]

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>8</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>true</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>
17-37: Dijkstra’s Algorithm Example

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>true</td>
<td>8</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>true</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm Example

Node	Known	Dist	Path
A | true | 0 | A
B | true | 5 | A
C | true | 3 | A
D | true | 4 | C
E | true | 9 | D
F | true | 8 | G
G | true | 7 | D
17-39: Dijkstra’s Algorithm

- Given the “path” field, we can construct the shortest path
 - Work backward from the end of the path
 - Follow the “path” pointers until the start node is reached
 - We can use a sentinel value in the “path” field of the initial node, so we know when to stop
void Dijkstra(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for (i=0; i<G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance >
 T[v].distance + e.cost) {
 T[e.neighbor].distance = T[v].distance + e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}
Calculating minimum distance unknown vertex:

```java
int minUnknownVertex(tableEntry T[])
{
    int i;
    int minVertex = -1;
    int minDistance = Integer.MAX_VALUE;
    for (i=0; i < T.length; i++) {
        if (!T[i].known && (T[i].distance < MinDistance)) {
            minVertex = i;
            minDistance = T[i].distance;
        }
    }
    return minVertex;
}
```
17-42: Dijkstra Running Time

• Time for initialization:

```java
for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].path = -1;
    T[i].known = false;
}
T[s].distance = 0;
```
• Time for initialization:

```java
for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].path = -1;
    T[i].known = false;
}
T[s].distance = 0;
```

• $\Theta(V)$
Dijkstra Running Time

- Total time for all calls to minUnknownVertex, and setting $T[v].known = true$ (for all iterations of the loop)

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    T[v].known = true; < ---------------
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```
Total time for all calls to minUnknownVertex, and setting $T[v].\text{known} = \text{true}$ (for all iterations of the loop)

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    T[v].\text{known} = \text{true}; < ---------------
    for (e = G[v]; e != \text{null}; e = e.next) {
        if (T[e.neighbor].distance > T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

- $\Theta(V^2)$
Dijkstra Running Time

- Total # of times the if statement will be executed:

```java
for (i=0; i < G.length; i++) {
    v = minUnKnownVertex(T);
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```
Total # of times the if statement will be executed:

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T);
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance > T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

E
• Total running time for all iterations of the inner for statement:

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T);
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance > T[v].distance + e.cost) {
            T[v].distance = T[v].distance + e.cost;
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```
Total running time for all iterations of the inner for statement:

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T);
    T[v].known = true;
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance > T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

\(\Theta(V + E)\)

Why \(\Theta(V + E)\) and not just \(\Theta(E)\)?
17-50: Dijkstra Running Time

- Total running time:
- Sum of:
 - Time for initialization
 - Time for executing all calls to \(\text{minUnknwonVertex} \)
 - Time for executing all distance / path updates
- \[= \Theta(V + V^2 + (V + E)) = \Theta(V^2) \]
• Can we do better than $\Theta(V^2)$
• For *dense* graphs, we can’t do better
 • To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
 • A dense graph can have $\Theta(V^2)$ edges
• For *sparse* graphs, we can do better
 • Where should we focus our attention?
Can we do better than $\Theta(V^2)$

For *dense* graphs, we can’t do better
- To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
- A dense graph can have $\Theta(V^2)$ edges

For *sparse* graphs, we can do better
- Where should we focus our attention?
- Finding the unknown vertex with minimum cost!
To improve the running time of Dijkstra:

- Place all of the vertices on a min-heap
 - Key value for min-heap = distance of vertex from initial
- While min-heap is not empty:
 - Pop smallest value off min-heap
 - Update table

- Problems with this method?
17-54: Improving Dijkstra

- To improve the running time of Dijkstra:
 - Place all of the vertices on a min-heap
 - Key value for min-heap = distance of vertex from initial
 - While min-heap is not empty:
 - Pop smallest value off min-heap
 - Update table

- Problems with this method?
 - When we update the table, we need to rearrange the heap
• Store a pointer for each vertex back into the heap
• When we update the table, we need to do a decrease-key operation
• Decrease-key can take up to time $O(\lg V)$.
• (Examples!)
17-56: Rearranging the heap

- Total time:
 - $O(V)$ remove-mins – $O(V \lg V)$
 - $O(E)$ decrease-keys – $O(E \lg V)$
 - Total time: $O(V \lg V + E \lg V) \in O(E \lg V)$
Improving Dijkstra

- Store vertices in heap
- When we update the table, we need to rearrange the heap
- Alternate Solution:
 - When the cost of a vertex decreases, add a new copy to the heap
Create a new priority queue, add start node

While the queue is not empty:

- Remove the vertex v with the smallest distance in the heap
- If v is not known
 - Mark v as known
 - For each neighbor w of v
 - If $\text{distance}[w] > \text{distance}[v] + \text{cost}((v, w))$
 - Set $\text{distance}[w] = \text{distance}[v] + \text{cost}((v, w))$
 - Add w to priority queue with priority $\text{distance}[w]$.
Each vertex can be added to the heap once for each incoming edge.

Size of the heap can then be up to $\Theta(E)$.
- E inserts, on heap that can be up to size E.
- E delete-mins, on heap that can be up to size E.

Total: $\Theta(E \lg E) \in \Theta(E \lg V)$.
17-60: Improved? Dijkstra Time

- Don’t use priority queue, running time is $\Theta(V^2)$
- Do use a priority queue, running time is $\Theta(E \lg E)$
- Which is better?
17-61: Improved? Dijkstra Time

- Don’t use priority queue, running time is $\Theta(V^2)$
- Do use a priority queue, running time is $\Theta(E \lg E)$
- Which is better?
 - For dense graphs, ($E \in \Theta(V^2)$), $\Theta(V^2)$ is better
 - For sparse graphs ($E \in \Theta(V)$), $\Theta(E \lg E)$ is better
If we use a data structure called a Fibonacci heap instead of a standard heap, we can implement decrease-key in constant time (on average).

Total time:

- $O(V)$ remove-mins – $O(V \lg V)$
- $O(E)$ decrease-keys – $O(E)$ (each decrease key takes $O(1)$ on average)
- Total time: $O(V \lg V + E)$
What if our graph has negative-weight edges?
- Think of the cost of the edge as the amount of energy consumed for a segment of road
- A downhill segment could have negative energy consumed for a hybrid

Will Dijkstra’s algorithm still work correctly?
- Examples
What happens if there is a negative-weight cycle?
What does the shortest path even mean?
17-65: **Negative Edges**

- What happens if there is a negative-weight cycle?
- What does the shortest path even mean?
 - Finding shortest paths in graphs that contain negative edges, assume that there are no negative weight cycles
- Hybrid example
All-Source Shortest Path

- What if we want to find the shortest path from all vertices to all other vertices?
- How can we do it?
What if we want to find the shortest path from all vertices to all other vertices?

How can we do it?

- Run Dijkstra’s Algorithm \(V \) times
- How long will this take?
- What about negative edges?
What if we want to find the shortest path from all vertices to all other vertices?

How can we do it?

- Run Dijkstra’s Algorithm V times
- How long will this take?
 - $\Theta(VE \log E)$ (using priority queue)
 - for sparse graphs, $\Theta(V^2 \log V)$
 - for dense graphs, $\Theta(V^3 \log V)$
 - $\Theta(V^3)$ (not using a priority queue)

What about negative edges?
- Doesn’t work correctly
Floyd’s Algorithm

- Alternate solution to all pairs shortest path
- Yields $\Theta(V^3)$ running time for all graphs
- Works for graphs with negative edges
- Can detect negative-weight cycles
Floyd’s Algorithm

- Vertices numbered from 0..(n-1)
- \(k\)-path from vertex \(v\) to vertex \(u\) is a path whose intermediate vertices (other than \(v\) and \(u\)) contain only vertices numbered less than or equal to \(k\)
- -1-path is a direct link
Shortest -1-path from 0 to 4: 5
Shortest 0-path from 0 to 4: 5
Shortest 1-path from 0 to 4: 4
Shortest 2-path from 0 to 4: 4
Shortest 3-path from 0 to 4: 3
• Shortest -1-path from 0 to 2: 7
• Shortest 0-path from 0 to 2: 7
• Shortest 1-path from 0 to 2: 6
• Shortest 2-path from 0 to 2: 6
• Shortest 3-path from 0 to 2: 6
• Shortest 4-path from 0 to 2: 4
Floyd’s Algorithm

- Shortest \(n \)-path = Shortest path
- Shortest -1-path:
 - \(\infty \) if there is no direct link
 - Cost of the direct link, otherwise
17-74: Floyd’s Algorithm

- Shortest n-path = Shortest path
- Shortest -1-path:
 - ∞ if there is no direct link
 - Cost of the direct link, otherwise
- If we could use the shortest k-path to find the shortest $(k + 1)$ path, we would be set
17-75: Floyd’s Algorithm

- Shortest k-path from v to u either goes through vertex k, or it does not
- If not:
 - Shortest k-path = shortest $(k - 1)$-path
- If so:
 - Shortest k-path = shortest $k - 1$ path from v to k, followed by the shortest $k - 1$ path from k to w
If we had the shortest k-path for all pairs (v, w), we could obtain the shortest $k + 1$-path for all pairs.

- For each pair v, w, compare:
 - length of the k-path from v to w
 - length of the k-path from v to k appended to the k-path from k to w

- Set the $k + 1$ path from v to w to be the minimum of the two paths above.
Floyd’s Algorithm

- Let $D_k[v, w]$ be the length of the shortest k-path from v to w.
- $D_0[v, w] = \text{cost of arc from } v \text{ to } w$ (∞ if no direct link)
- $D_k[v, w] = \text{MIN}(D_{k-1}[v, w], D_{k-1}[v, k] + D_{k-1}[k, w])$
- Create D_{-1}, use D_{-1} to create D_0, use D_0 to create D_1, and so on – until we have D_{n-1}
Floyd’s Algorithm

- Use a doubly-nested loop to create D_k from D_{k-1}
- Use the same array to store D_{k-1} and D_k – just overwrite with the new values
- Embed this loop in a loop from 1..k
Floyd's Algorithm

Floyd(Edge G[], int D[][])
 int i, j, k

 Initialize D, D[i][j] = cost from i to j

 for (k=0; k<G.length; k++)
 for (i=0; i<G.length; i++)
 for (j=0; j<G.length; j++)
 if ((D[i][k] != Integer.MAX_VALUE) && (D[k][j] != Integer.MAX_VALUE) && (D[i][j] > (D[i][k] + D[k][j])))
 D[i][j] = D[i][k] + D[k][j]
Floyd’s Algorithm

- We’ve only calculated the *distance* of the shortest path, not the path itself.
- We can use a similar strategy to the PATH field for Dijkstra to store the path:
 - We will need a 2-D array to store the paths: $P[i][j] = \text{last vertex on shortest path from } i \text{ to } j$