
Data Structures and Algorithms
CS245-2016S-17

Shortest Path
Dijkstra’s Algorithm

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


17-0: Computing Shortest Path

Given a directed weighted graph G (all weights
non-negative) and two vertices x and y, find the
least-cost path from x to y in G.

Undirected graph is a special case of a directed
graph, with symmetric edges

Least-cost path may not be the path containing the
fewest edges

“shortest path” == “least cost path”

“path containing fewest edges” = “path
containing fewest edges”



17-1: Shortest Path Example

Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

Shortest Path from A to E?



17-2: Shortest Path Example

Shortest path 6= path containing fewest edges

A

B

C

D

E

1

2

1

2

8

5

4

4

Shortest Path from A to E:

A, B, C, D, E



17-3: Single Source Shortest Path

To find the shortest path from vertex x to vertex y,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

Why?



17-4: Single Source Shortest Path

To find the shortest path from vertex x to vertex y,
we need (worst case) to find the shortest path from
x to all other vertices in the graph

To find the shortest path from x to y, we need
to find the shortest path from x to all nodes on
the path from x to y

Worst case, all nodes will be on the path



17-5: Single Source Shortest Path

If all edges have unit weight ...



17-6: Single Source Shortest Path

If all edges have unit weight,

We can use Breadth First Search to compute the
shortest path

BFS Spanning Tree contains shortest path to each
node in the graph

Need to do some more work to create & save
BFS spanning tree

When edges have differing weights, this obviously
will not work



17-7: Single Source Shortest Path

Divide the vertices into two sets:

Vertices whose shortest path from the initial
vertex is known

Vertices whose shortest path from the initial
vertex is not known

Initially, only the initial vertex is known

Move vertices one at a time from the unknown set
to the known set, until all vertices are known



17-8: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Start with the vertex A



17-9: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

Known vertices are circled in red

We can now extend the known set by 1 vertex



17-10: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?



17-11: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?

Could we do better with a more roundabout
path?



17-12: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

Why is it safe to add D, with cost 1?

Could we do better with a more roundabout
path?

No – to get to any other node will cost at least 1

No negative edge weights, can’t do better than
1



17-13: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

We can now add another vertex to our known list ...



17-14: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

How do we know that we could not get to B
cheaper than by going through D?



17-15: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

How do we know that we could not get to B
cheaper than by going through D?

Costs 1 to get to D

Costs at least 2 to get anywhere from D
Cost at least (1+2 = 3) to get to B through D



17-16: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

Next node we can add ...



17-17: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

(We also could have added E for this step)

Next vertex to add to Known ...



17-18: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

Cost to add F is 8 (through C)

Cost to add G is 5 (through D)



17-19: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

5

Last node ...



17-20: Single Source Shortest Path

A B

C D E

F G

2

4 1 3 10

2 2

5 8 4 6

1

Node Distance

A

B

C

D

E

F

G

0

1

2

3

3

6

5

We now know the length of the shortest path from
A to all other vertices in the graph



17-21: Dijkstra’s Algorithm

Keep a table that contains, for each vertex

Is the distance to that vertex known?

What is the best distance we’ve found so far?

Repeat:

Pick the smallest unknown distance

mark it as known

update the distance of all unknown neighbors of
that node

Until all vertices are known



17-22: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A false 0

B false ∞

C false ∞

D false ∞

E false ∞

F false ∞



17-23: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false ∞

E false ∞

F false 1



17-24: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 5

D false 8

E false 3

F true 1



17-25: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 7

C false 4

D false 8

E true 3

F true 1



17-26: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B false 5

C true 4

D false 6

E true 3

F true 1



17-27: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D false 6

E true 3

F true 1



17-28: Dijkstra’s Algorithm Example

A

B

C

D

E

F
1

1

7

5
2

1

3

2

7

1

Node Known Distance

A true 0

B true 5

C true 4

D true 6

E true 3

F true 1



17-29: Dijkstra’s Algorithm

After Dijkstra’s algorithm is complete:

We know the length of the shortest path

We do not know what the shortest path is

How can we modify Dijstra’s algorithm to compute
the path?



17-30: Dijkstra’s Algorithm

After Dijkstra’s algorithm is complete:

We know the length of the shortest path

We do not know what the shortest path is

How can we modify Dijstra’s algorithm to compute
the path?

Store not only the distance, but the immediate
parent that led to this distance



17-31: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A false 0

B false ∞

C false ∞

D false ∞

E false ∞

F false ∞

G false ∞



17-32: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C false 3 A

D false ∞

E false ∞

F false ∞

G false ∞



17-33: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D false 4 C

E false ∞

F false ∞

G false ∞



17-34: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B false 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D



17-35: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 9 D

G false 7 D



17-36: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F false 8 G

G true 7 D



17-37: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E false 9 D

F true 8 G

G true 7 D



17-38: Dijkstra’s Algorithm Example

A B

DC E

F G

1

3

2

5

1
4

2

1
35

1

5

Node Known Dist Path

A true 0

B true 5 A

C true 3 A

D true 4 C

E true 9 D

F true 8 G

G true 7 D



17-39: Dijkstra’s Algorithm

Given the “path” field, we can construct the
shortest path

Work backward from the end of the path

Follow the “path” pointers until the start node is
reached

We can use a sentinel value in the “path” field
of the initial node, so we know when to stop



17-40: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}



17-41: minUnknownVertex

Calculating minimum distance unknown vertex:

int minUnknownVertex(tableEntry T[]) {
int i;
int minVertex = -1;
int minDistance = Integer.MAX_VALUE;
for (i=0; i < T.length; i++) {

if ((!T[i].known) &&
(T[i].distance < MinDistance)) {

minVertex = i;
minDistance = T[i].distance;

}
}
return minVertex;

}



17-42: Dijkstra Running Time

Time for initialization:

for(i=0; i<G.length; i++) {
T[i].distance = Integer.MAX_VALUE;
T[i].path = -1;
T[i].known = false;

}
T[s].distance = 0;



17-43: Dijkstra Running Time

Time for initialization:

for(i=0; i<G.length; i++) {
T[i].distance = Integer.MAX_VALUE;
T[i].path = -1;
T[i].known = false;

}
T[s].distance = 0;

Θ(V )



17-44: Dijkstra Running Time

Total time for all calls to minUnknownVertex, and
setting T[v].known = true (for all iterations of the
loop)

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T); < These two lines

T[v].known = true; < ---------------

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}



17-45: Dijkstra Running Time

Total time for all calls to minUnknownVertex, and
setting T[v].known = true (for all iterations of the
loop)

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T); < These two lines

T[v].known = true; < ---------------

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

Θ(V 2)



17-46: Dijkstra Running Time

Total # of times the if statement will be executed:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}



17-47: Dijkstra Running Time

Total # of times the if statement will be executed:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

E



17-48: Dijkstra Running Time

Total running time for all iterations of the inner for
statement:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

|> for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}



17-49: Dijkstra Running Time

Total running time for all iterations of the inner for
statement:

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

|> for (e = G[v]; e != null; e = e.next) {

|> if (T[e.neighbor].distance >

|> T[v].distance + e.cost) {

|> T[e.neighbor].distance = T[v].distance + e.cost;

|> T[e.neighbor].path = v;

}

}

}

Θ(V + E)

Why Θ(V + E) and not just Θ(E)?



17-50: Dijkstra Running Time

Total running time:

Sum of:

Time for initialization

Time for executing all calls to
minUnknownVertex

Time for executing all distance / path updates

= Θ(V + V 2 + (V + E)) = Θ(V 2)



17-51: Improving Dijkstra

Can we do better than Θ(V 2)

For dense graphs, we can’t do better

To ensure that the shortest path to all vertices
is computed, need to look at all edges in the
graph

A dense graph can have Θ(V 2) edges

For sparse graphs, we can do better

Where should we focus our attention?



17-52: Improving Dijkstra

Can we do better than Θ(V 2)

For dense graphs, we can’t do better

To ensure that the shortest path to all vertices
is computed, need to look at all edges in the
graph

A dense graph can have Θ(V 2) edges

For sparse graphs, we can do better

Where should we focus our attention?

Finding the unknown vertex with minimum cost!



17-53: Improving Dijkstra

To improve the running time of Dijkstra:

Place all of the vertices on a min-heap
Key value for min-heap = distance of vertex
from initial

While min-heap is not empty:
Pop smallest value off min-heap
Update table

Problems with this method?



17-54: Improving Dijkstra

To improve the running time of Dijkstra:

Place all of the vertices on a min-heap
Key value for min-heap = distance of vertex
from initial

While min-heap is not empty:
Pop smallest value off min-heap
Update table

Problems with this method?

When we update the table, we need to
rearrange the heap



17-55: Rearranging the heap

Store a pointer for each vertex back into the heap

When we update the table, we need to do a
decrease-key operation

Decrease-key can take up to time O(lg V ).

(Examples!)



17-56: Rearranging the heap

Total time:

O(V ) remove-mins – O(V lg V )

O(E) dercrease-keys – O(E lg V )

Total time: O(V lg V + E lg V ) ∈ O(E lg V )



17-57: Improving Dijkstra

Store vertices in heap

When we update the table, we need to rearrange
the heap

Alternate Solution:

When the cost of a vertex decreases, add a
new copy to the heap



17-58: Improving Dijkstra

Create a new priority queue, add start node

While the queue is not empty:

Remove the vertex v with the smallest distance
in the heap

If v is not known
Mark v as known
For each neigbor w of v
• If distance[w] > distance[v] + cost((v, w))
• Set distance[w] = distance[v] +

cost((v, w))
• Add w to priority queue with priority

distance[w]



17-59: Improved Dijkstra Time

Each vertex can be added to the heap once for
each incoming edge

Size of the heap can then be up to Θ(E)

E inserts, on heap that can be up to size E

E delete-mins, on heap that can be upto to size
E

Total: Θ(E lgE) ∈ Θ(E lg V )



17-60: Improved? Dijkstra Time

Don’t use priority queue, running time is Θ(V 2)

Do use a prioroty queue, running time is Θ(E lgE)

Which is better?



17-61: Improved? Dijkstra Time

Don’t use priority queue, running time is Θ(V 2)

Do use a prioroty queue, running time is Θ(E lgE)

Which is better?

For dense graphs, (E ∈ Θ(V 2)), Θ(V 2) is better

For sparse graphs (E ∈ Θ(V )), Θ(E lgE) is
better



17-62: Improved! Dijkstra Time

If we use a data structre called a Fibonacci heap
instead of a standard heap, we can implement
decrease-key in constant time (on average).

Total time:

O(V ) remove-mins – O(V lg V )

O(E) dercrease-keys – O(E) (each decrease
key takes O(1) on average)

Total time: O(V lg V + E)



17-63: Negative Edges

What if our graph has negative-weight edges?

Think of the cost of the edge as the amount of
energy consumed for a segment of road

A downhill segment could have negative energy
consumed for a hybrid

Will Dijkstra’s algorithm still work correctly?

Examples



17-64: Negative Edges

What happens if there is a negative-weight cycle?

What does the shortest path even mean?



17-65: Negative Edges

What happens if there is a negative-weight cycle?

What does the shortest path even mean?

Finding shortest paths in graphs that contain
negative edges, assume that there are no
negative weight cycles

Hybrid example



17-66: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?



17-67: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?

Run Dijktra’s Algorithm V times

How long will this take?

What about negative edges?



17-68: All-Source Shortest Path

What if we want to find the shortest path from all
vertices to all other vertices?

How can we do it?

Run Dijktra’s Algorithm V times

How long will this take?

Θ(V E lgE) (using priority queue)

• for sparse graphs, Θ(V 2 lg V )
• for dense graphs, Θ(V 3 lg V )
Θ(V 3) (not using a priority queue)

What about negative edges?
Doesn’t work correctly



17-69: Floyd’s Algorithm

Alternate solution to all pairs shortest path

Yields Θ(V 3) running time for all graphs

Works for graphs with negative edges

Can detect negative-weight cycles



17-70: Floyd’s Algorithm

Vertices numbered from 0..(n-1)

k-path from vertex v to vertex u is a path whose
intermediate vertices (other than v and u) contain
only vertices numbered less than or equal to k

-1-path is a direct link



17-71: k-path Examples

0

1

2

3

4

1

1

1

1

7

35

5

Shortest -1-path from 0 to 4: 5

Shortest 0-path from 0 to 4: 5

Shortest 1-path from 0 to 4: 4

Shortest 2-path from 0 to 4: 4

Shortest 3-path from 0 to 4: 3



17-72: k-path Examples

0

1

2

3

4

1

1

1

1

7

35

5

Shortest -1-path from 0 to 2: 7

Shortest 0-path from 0 to 2: 7

Shortest 1-path from 0 to 2: 6

Shortest 2-path from 0 to 2: 6

Shortest 3-path from 0 to 2: 6

Shortest 4-path from 0 to 2: 4



17-73: Floyd’s Algorithm

Shortest n-path = Shortest path

Shortest -1-path:

∞ if there is no direct link

Cost of the direct link, otherwise



17-74: Floyd’s Algorithm

Shortest n-path = Shortest path

Shortest -1-path:

∞ if there is no direct link

Cost of the direct link, otherwise

If we could use the shortest k-path to find the
shortest (k + 1) path, we would be set



17-75: Floyd’s Algorithm

Shortest k-path from v to u either goes through
vertex k, or it does not

If not:

Shortest k-path = shortest (k − 1)-path

If so:

Shortest k-path = shortest k − 1 path from v to
k, followed by the shortest k − 1 path from k to
w



17-76: Floyd’s Algorithm

If we had the shortest k-path for all pairs (v,w), we
could obtain the shortest k + 1-path for all pairs

For each pair v, w, compare:
length of the k-path from v to w
length of the k-path from v to k appended to
the k-path from k to w

Set the k + 1 path from v to w to be the
minimum of the two paths above



17-77: Floyd’s Algorithm

Let Dk[v, w] be the length of the shortest k-path
from v to w.

D0[v, w] = cost of arc from v to w (∞ if no direct
link)

Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

Create D
−1, use D

−1 to create D0, use D0 to
create D1, and so on – until we have Dn−1



17-78: Floyd’s Algorithm

Use a doubly-nested loop to create Dk from Dk−1

Use the same array to store Dk−1 and Dk – just
overwrite with the new values

Embed this loop in a loop from 1..k



17-79: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {
int i,j,k

Initialize D, D[i][j] = cost from i to j

for (k=0; k<G.length; k++;
for(i=0; i<G.length; i++)

for(j=0; j<G.length; j++)
if ((D[i][k] != Integer.MAX_VALUE) &&

(D[k][j] != Integer.MAX_VALUE) &&
(D[i][j] > (D[i,k] + D[k,j])))

D[i][j] = D[i][k] + D[k][j]
}



17-80: Floyd’s Algorithm

We’ve only calculated the distance of the shortest
path, not the path itself

We can use a similar strategy to the PATH field for
Dijkstra to store the path

We will need a 2-D array to store the paths:
P[i][j] = last vertex on shortest path from i to j


	{small lecturenumber -	heblocknumber :} Computing Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shortest Path Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Single Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithm Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Codeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} minUnknownVertexaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Running Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rearranging the heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rearranging the heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improving Dijkstraaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improved Dijkstra Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improved? Dijkstra Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improved? Dijkstra Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Improved! Dijkstra Timeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Negative Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Negative Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Negative Edgesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} All-Source Shortest Pathaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} k-path Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} k-path Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Floyd's Algorithmaddtocounter {blocknumber}{1}

