17-0: **Computing Shortest Path**

- Given a directed weighted graph \(G \) (all weights non-negative) and two vertices \(x \) and \(y \), find the least-cost path from \(x \) to \(y \) in \(G \).
 - Undirected graph is a special case of a directed graph, with symmetric edges
 - Least-cost path may not be the path containing the fewest edges
 - “shortest path” \(= \) “least cost path”
 - “path containing fewest edges” \(= \) “path containing fewest edges”

17-1: **Shortest Path Example**

- Shortest path \(\neq \) path containing fewest edges

![Diagram](image1.png)

- Shortest Path from A to E?

17-2: **Shortest Path Example**

- Shortest path \(\neq \) path containing fewest edges

![Diagram](image2.png)

- Shortest Path from A to E:
 - A, B, C, D, E

17-3: **Single Source Shortest Path**
To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph.

Why?

17-4: **Single Source Shortest Path**

- To find the shortest path from vertex x to vertex y, we need (worst case) to find the shortest path from x to all other vertices in the graph.
 - To find the shortest path from x to y, we need to find the shortest path from x to all nodes on the path from x to y.
 - Worst case, all nodes will be on the path.

17-5: **Single Source Shortest Path**

- If all edges have unit weight ...

17-6: **Single Source Shortest Path**

- If all edges have unit weight,
 - We can use Breadth First Search to compute the shortest path.
 - BFS Spanning Tree contains shortest path to each node in the graph.
 - Need to do some more work to create & save BFS spanning tree.
 - When edges have differing weights, this obviously will not work.

17-7: **Single Source Shortest Path**

- Divide the vertices into two sets:
 - Vertices whose shortest path from the initial vertex is known.
 - Vertices whose shortest path from the initial vertex is not known.

- Initially, only the initial vertex is known.

- Move vertices one at a time from the unknown set to the known set, until all vertices are known.

17-8: **Single Source Shortest Path**
• Start with the vertex A

17-9: Single Source Shortest Path

![Graph with nodes A, B, C, D, E, F, G and edges and distances]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• Known vertices are circled in red
• We can now extend the known set by 1 vertex

17-10: Single Source Shortest Path

![Graph with updated nodes and distances]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• Why is it safe to add D, with cost 1?

17-11: Single Source Shortest Path

![Graph with further updated nodes and distances]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• Why is it safe to add D, with cost 1?
• Could we do better with a more roundabout path?

17-12: **Single Source Shortest Path**

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• Why is it safe to add D, with cost 1?
 • Could we do better with a more roundabout path?
 • No – to get to any other node will cost at least 1
 • No negative edge weights, can’t do better than 1

17-13: **Single Source Shortest Path**

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• We can now add another vertex to our known list ...

17-14: **Single Source Shortest Path**

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

• How do we know that we could not get to B cheaper than by going through D?
17-15: **Single Source Shortest Path**

![Graph with distances and node distances]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

- How do we know that we could not get to B cheaper than by going through D?
 - Costs 1 to get to D
 - Costs at least 2 to get anywhere from D
 - Cost at least \((1+2 = 3)\) to get to B through D

17-16: **Single Source Shortest Path**

![Graph with distances and node distances]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

- Next node we can add ...
17-18: **Single Source Shortest Path**

![Graph with node distances and edges]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
</tbody>
</table>

- Cost to add F is 8 (through C)
- Cost to add G is 5 (through D)

17-19: **Single Source Shortest Path**

![Graph with updated node distances and edges]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
</tbody>
</table>

- Last node ...

17-20: **Single Source Shortest Path**

![Graph with final node distances and edges]

<table>
<thead>
<tr>
<th>Node</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
</tbody>
</table>

- We now know the length of the shortest path from A to all other vertices in the graph

17-21: **Dijkstra’s Algorithm**
• Keep a table that contains, for each vertex
 • Is the distance to that vertex known?
 • What is the best distance we’ve found so far?

• Repeat:
 • Pick the smallest unknown distance
 • mark it as known
 • update the distance of all unknown neighbors of that node

• Until all vertices are known

17-22: Dijkstra’s Algorithm Example

17-23: Dijkstra’s Algorithm Example

17-24: Dijkstra’s Algorithm Example
17-25: Dijkstra’s Algorithm Example

17-26: Dijkstra’s Algorithm Example

17-27: Dijkstra’s Algorithm Example
Dijkstra’s Algorithm Example

17-28: Dijkstra’s Algorithm Example

17-29: Dijkstra’s Algorithm

- After Dijkstra’s algorithm is complete:
 - We know the length of the shortest path
 - We do not know what the shortest path is

- How can we modify Dijkstra’s algorithm to compute the path?

17-30: Dijkstra’s Algorithm

- After Dijkstra’s algorithm is complete:
 - We know the length of the shortest path
 - We do not know what the shortest path is

- How can we modify Dijkstra’s algorithm to compute the path?
 - Store not only the distance, but the immediate parent that led to this distance
17-31: Dijkstra’s Algorithm Example

Node	Known	Dist	Path
A | false | 0 |
B | false | ∞ |
C | false | ∞ |
D | false | ∞ |
E | false | ∞ |
F | false | ∞ |
G | false | ∞ |

17-32: Dijkstra’s Algorithm Example

Node	Known	Dist	Path
A | true | 0 |
B | false | 5 | A
C | false | 3 | A
D | false | ∞ |
E | false | ∞ |
F | false | ∞ |
G | false | ∞ |

17-33: Dijkstra’s Algorithm Example

Node	Known	Dist	Path
A | true | 0 |
B | false | 5 | A
C | true | 3 | A
D | false | 4 | C
E | false | ∞ |
F | false | ∞ |
G | false | ∞ |

17-34: Dijkstra’s Algorithm Example

Node	Known	Dist	Path
A | true | 0 |
B | false | 5 | A
C | true | 3 | A
D | true | 4 | C
E | false | 9 | D
F | false | 9 | D
G | false | 7 | D

17-35: Dijkstra’s Algorithm Example
17-36: **Dijkstra’s Algorithm Example**

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>G</td>
<td>false</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>

17-37: **Dijkstra’s Algorithm Example**

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>false</td>
<td>8</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>true</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>

17-38: **Dijkstra’s Algorithm Example**

<table>
<thead>
<tr>
<th>Node</th>
<th>Known</th>
<th>Dist</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>true</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>true</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>true</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>D</td>
<td>true</td>
<td>4</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>false</td>
<td>9</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>true</td>
<td>8</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>true</td>
<td>7</td>
<td>D</td>
</tr>
</tbody>
</table>

17-39: **Dijkstra’s Algorithm**

- Given the “path” field, we can construct the shortest path
- Work backward from the end of the path
Follow the “path” pointers until the start node is reached
- We can use a sentinel value in the “path” field of the initial node, so we know when to stop

17-40: Dijkstra Code

```java
void Dijkstra(Edge G[], int s, tableEntry T[]) {
    int i, v;
    Edge e;
    for(i=0; i<G.length; i++) {
        T[i].distance = Integer.MAX_VALUE;
        T[i].path = -1;
        T[i].known = false;
        T[s].distance = 0;
    }
    for (i=0; i < G.length; i++) {
        v = minUnknownVertex(T);
        T[v].known = true;
        for (e = G[v]; e != null; e = e.next) {
            if (T[e.neighbor].distance >
                T[v].distance + e.cost) {
                T[e.neighbor].distance = T[v].distance + e.cost;
                T[e.neighbor].path = v;
            }
        }
    }
}
```

17-41: minUnknownVertex

- Calculating minimum distance unknown vertex:

```java
int minUnknownVertex(tableEntry T[]) {
    int minVertex = -1;
    int minDistance = Integer.MAX_VALUE;
    for (i=0; i < T.length; i++) {
        if ((!T[i].known) &&
            (T[i].distance < MinDistance)) {
            minVertex = i;
            minDistance = T[i].distance;
        }
    }
    return minVertex;
}
```

17-42: Dijkstra Running Time

- Time for initialization:

```java
for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].path = -1;
    T[i].known = false;
}
T[s].distance = 0;
```

17-43: Dijkstra Running Time

- Time for initialization:

```java
for(i=0; i<G.length; i++) {
    T[i].distance = Integer.MAX_VALUE;
    T[i].path = -1;
    T[i].known = false;
}
T[s].distance = 0;
```
• Θ(V)

17-44: Dijkstra Running Time

• Total time for all calls to minUnknownVertex, and setting T[v].known = true (for all iterations of the loop)

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    T[v].known = true; < ---------------
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

17-45: Dijkstra Running Time

• Total time for all calls to minUnknownVertex, and setting T[v].known = true (for all iterations of the loop)

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); < These two lines
    T[v].known = true; < ---------------
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

• Θ(V^2)

17-46: Dijkstra Running Time

• Total # of times the if statement will be executed:

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); 
    T[v].known = true; 
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

17-47: Dijkstra Running Time

• Total # of times the if statement will be executed:

```java
for (i=0; i < G.length; i++) {
    v = minUnknownVertex(T); 
    T[v].known = true; 
    for (e = G[v]; e != null; e = e.next) {
        if (T[e.neighbor].distance >
            T[v].distance + e.cost) {
            T[e.neighbor].distance = T[v].distance + e.cost;
            T[e.neighbor].path = v;
        }
    }
}
```

• E

17-48: Dijkstra Running Time

• Total running time for all iterations of the inner for statement:
for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance > T[v].distance + e.cost) {
 T[e.neighbor].distance = T[v].distance + e.cost;
 T[e.neighbor].path = v;
 }
 }
}

17-49: Dijkstra Running Time

- Total running time for all iterations of the inner for statement:

\[
\Theta(V + E)
\]

- Why \(\Theta(V + E)\) and not just \(\Theta(E)\)?

17-50: Dijkstra Running Time

- Total running time:
 - Sum of:
 - Time for initialization
 - Time for executing all calls to `minUnknownVertex`
 - Time for executing all distance / path updates

\[
= \Theta(V + V^2 + (V + E)) = \Theta(V^2)
\]

17-51: Improving Dijkstra

- Can we do better than \(\Theta(V^2)\)
 - For dense graphs, we can’t do better
 - To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
 - A dense graph can have \(\Theta(V^2)\) edges
 - For sparse graphs, we can do better
 - Where should we focus our attention?

17-52: Improving Dijkstra

- Can we do better than \(\Theta(V^2)\)
 - For dense graphs, we can’t do better
 - To ensure that the shortest path to all vertices is computed, need to look at all edges in the graph
 - A dense graph can have \(\Theta(V^2)\) edges
• For sparse graphs, we can do better
 • Where should we focus our attention?
 • Finding the unknown vertex with minimum cost!

17-53: **Improving Dijkstra**

• To improve the running time of Dijkstra:
 • Place all of the vertices on a min-heap
 • Key value for min-heap = distance of vertex from initial
 • While min-heap is not empty:
 • Pop smallest value off min-heap
 • Update table
 • Problems with this method?

17-54: **Improving Dijkstra**

• To improve the running time of Dijkstra:
 • Place all of the vertices on a min-heap
 • Key value for min-heap = distance of vertex from initial
 • While min-heap is not empty:
 • Pop smallest value off min-heap
 • Update table
 • Problems with this method?
 • When we update the table, we need to rearrange the heap

17-55: **Rearranging the heap**

• Store a pointer for each vertex back into the heap
• When we update the table, we need to do a decrease-key operation
• Decrease-key can take up to time $O(lg V)$.
 • (Examples!)

17-56: **Rearranging the heap**

• Total time:
 • $O(V)$ remove-mins – $O(V lg V)$
 • $O(E)$ decrease-keys – $O(E lg V)$
 • Total time: $O(V lg V + E lg V) \in O(E lg V)$

17-57: **Improving Dijkstra**

• Store vertices in heap
• When we update the table, we need to rearrange the heap
• Alternate Solution:
 • When the cost of a vertex decreases, add a new copy to the heap

17-58: Improving Dijkstra

• Create a new priority queue, add start node
• While the queue is not empty:
 • Remove the vertex \(v \) with the smallest distance in the heap
 • If \(v \) is not known
 • Mark \(v \) as known
 • For each neighbor \(w \) of \(v \)
 • If distance[\(w \)] \(\leq \) distance[\(v \)] + cost((\(v, w \)))
 • Set distance[\(w \)] = distance[\(v \)] + cost((\(v, w \)))
 • Add \(w \) to priority queue with priority distance[\(w \)]

17-59: Improved Dijkstra Time

• Each vertex can be added to the heap once for each incoming edge
• Size of the heap can then be up to \(\Theta(E) \)
 • \(E \) inserts, on heap that can be up to size \(E \)
 • \(E \) delete-mins, on heap that can be up to size \(E \)
• Total: \(\Theta(E \lg E) \in \Theta(E \lg V) \)

17-60: Improved? Dijkstra Time

• Don’t use priority queue, running time is \(\Theta(V^2) \)
• Do use a priority queue, running time is \(\Theta(E \lg E) \)
• Which is better?

17-61: Improved? Dijkstra Time

• Don’t use priority queue, running time is \(\Theta(V^2) \)
• Do use a priority queue, running time is \(\Theta(E \lg E) \)
• Which is better?
 • For dense graphs, \((E \in \Theta(V^2)), \Theta(V^2) \) is better
 • For sparse graphs \((E \in \Theta(V)), \Theta(E \lg E) \) is better

17-62: Improved! Dijkstra Time

• If we use a data structure called a Fibonacci heap instead of a standard heap, we can implement decrease-key in constant time (on average).
• Total time:
 • \(O(V) \) remove-mins – \(O(V \lg V) \)
• $O(E)$ decrease-keys – $O(E)$ (each decrease key takes $O(1)$ on average)
• Total time: $O(V \log V + E)$

17-63: Negative Edges

• What if our graph has negative-weight edges?
 • Think of the cost of the edge as the amount of energy consumed for a segment of road
 • A downhill segment could have negative energy consumed for a hybrid
• Will Dijkstra's algorithm still work correctly?
 • Examples

17-64: Negative Edges

• What happens if there is a negative-weight cycle?
• What does the shortest path even mean?

17-65: Negative Edges

• What happens if there is a negative-weight cycle?
• What does the shortest path even mean?
 • Finding shortest paths in graphs that contain negative edges, assume that there are no negative weight cycles
 • Hybrid example

17-66: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?
• How can we do it?

17-67: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?
• How can we do it?
 • Run Dijkstra’s Algorithm V times
 • How long will this take?
 • What about negative edges?

17-68: All-Source Shortest Path

• What if we want to find the shortest path from all vertices to all other vertices?
• How can we do it?
 • Run Dijkstra’s Algorithm V times
 • How long will this take?
 • $\Theta(VE \log E)$ (using priority queue)
• for sparse graphs, $\Theta(V^2 \lg V)$
• for dense graphs, $\Theta(V^3 \lg V)$
• $\Theta(V^3)$ (not using a priority queue)

What about negative edges?
• Doesn’t work correctly

17-69: **Floyd’s Algorithm**

• Alternate solution to all pairs shortest path
• Yields $\Theta(V^3)$ running time for all graphs
• Works for graphs with negative edges
• Can detect negative-weight cycles

17-70: **Floyd’s Algorithm**

• Vertices numbered from 0..(n-1)
• k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices numbered less than or equal to k
• -1-path is a direct link

17-71: **k-path Examples**

- Shortest -1-path from 0 to 4: 5
- Shortest 0-path from 0 to 4: 5
- Shortest 1-path from 0 to 4: 4
- Shortest 2-path from 0 to 4: 4
- Shortest 3-path from 0 to 4: 3

17-72: **k-path Examples**
Dijkstra’s Algorithm

• Shortest -1-path from 0 to 2: 7
• Shortest 0-path from 0 to 2: 7
• Shortest 1-path from 0 to 2: 6
• Shortest 2-path from 0 to 2: 6
• Shortest 3-path from 0 to 2: 6
• Shortest 4-path from 0 to 2: 4

Floyd’s Algorithm

• Shortest \(n \)-path = Shortest path
• Shortest -1-path:
 • \(\infty \) if there is no direct link
 • Cost of the direct link, otherwise

Floyd’s Algorithm

• Shortest \(n \)-path = Shortest path
• Shortest -1-path:
 • \(\infty \) if there is no direct link
 • Cost of the direct link, otherwise
• If we could use the shortest \(k \)-path to find the shortest \((k + 1) \) path, we would be set

Floyd’s Algorithm

• Shortest \(k \)-path from \(v \) to \(u \) either goes through vertex \(k \), or it does not
 • If not:
 • Shortest \(k \)-path = shortest \((k - 1) \)-path
 • If so:
 • Shortest \(k \)-path = shortest \(k - 1 \) path from \(v \) to \(k \), followed by the shortest \(k - 1 \) path from \(k \) to \(w \)

Floyd’s Algorithm

• If we had the shortest \(k \)-path for all pairs \((v, w)\), we could obtain the shortest \(k + 1 \)-path for all pairs
 • For each pair \(v, w \), compare:
 • length of the \(k \)-path from \(v \) to \(w \)
 • length of the \(k \)-path from \(v \) to \(k \) appended to the \(k \)-path from \(k \) to \(w \)
 • Set the \(k + 1 \) path from \(v \) to \(w \) to be the minimum of the two paths above

Floyd’s Algorithm

• Let \(D_k[v, w] \) be the length of the shortest \(k \)-path from \(v \) to \(w \).
Shortest Path

Dijkstra’s Algorithm

- $D_0[v, w] = \text{cost of arc from } v \text{ to } w (\infty \text{ if no direct link})$
- $D_k[v, w] = \text{MIN}(D_{k-1}[v, w], D_{k-1}[v, k] + D_{k-1}[k, w])$
- Create D_{-1}, use D_{-1} to create D_0, use D_0 to create D_1, and so on – until we have D_{n-1}

17-78: Floyd’s Algorithm

- Use a doubly-nested loop to create D_k from D_{k-1}
 - Use the same array to store D_{k-1} and D_k – just overwrite with the new values
 - Embed this loop in a loop from 1..k

17-79: Floyd’s Algorithm

Floyd(Edge G[], int D[][]) {
 int i, j, k

 Initialize D, D[i][j] = cost from i to j

 for (k=0; k<G.length; k++)
 for (i=0; i<G.length; i++)
 for (j=0; j<G.length; j++)
 if ((D[i][k] != Integer.MAX_VALUE) &&
 (D[k][j] != Integer.MAX_VALUE) &&
 (D[i][j] > (D[i,k] + D[k,j])))
 D[i][j] = D[i][k] + D[k][j]
}

17-80: Floyd’s Algorithm

- We’ve only calculated the distance of the shortest path, not the path itself
- We can use a similar strategy to the PATH field for Dijkstra to store the path
 - We will need a 2-D array to store the paths: $P[i][j] = \text{last vertex on shortest path from i to j}$