
Data Structures and Algorithms
CS245-2017S-18

Spanning Trees

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


18-0: Spanning Trees

Given a connected, undirected graph G

A subgraph of G contains a subset of the
vertices and edges in G

A Spanning Tree T of G is:
subgraph of G
contains all vertices in G
connected
acyclic



18-1: Spanning Tree Examples

Graph

0 1

2 3 4

5 6



18-2: Spanning Tree Examples

Spanning Tree

0 1

2 3 4

5 6



18-3: Spanning Tree Examples

Graph

0 1

2 3 4

5 6



18-4: Spanning Tree Examples

Spanning Tree

0 1

2 3 4

5 6



18-5: Minimal Cost Spanning Tree

Minimal Cost Spanning Tree

Given a weighted, undirected graph G

Spanning tree of G which minimizes the sum of
all weights on edges of spanning tree



18-6: MST Example

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1



18-7: MST Example

0 1

2 3 4

5 6

2

1

2

4 6

1



18-8: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?



18-9: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?



18-10: Minimal Cost Spanning Trees

Can there be more than one minimal cost
spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?

All spanning trees are MSTs



18-11: Calculating MST

Two algorithms to calculate MST:

Kruskal’s Algorithm
Build a “forest” of spanning trees
Combine into one tree

Prims Algorithm
Grow a single tree out from a start vertex



18-12: Kruskal’s Algorithm

Start with an empty graph (no edges)

Sort the edges by cost

For each edge e (in increasing order of cost)

Add e to G if it would not cause a cycle



18-13: Kruskal’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1



18-14: Kruskal’s Algorithm

Proof (by contradiction)

Assume that no optimal MST T contains the
minimum cost edge e

Add e to T , which causes a cycle

Remove an edge other than e to break the cycle

cost T ′ ≤ T , a contradiction



18-15: Kruskal’s Algorithm

Coding Kruskal’s Algorithm:

Place all edges into a list

Sort list of edges by cost

For each edge in the list
Select the edge if it does not form a cycle
with previously selected edges
How can we do this?



18-16: Kruskal’s Algorithm

Determining of adding an edge will cause a cycle

Start with a forest of V trees (each containing
one node)

Each added edge merges two trees into one
tree

An edge causes a cycle if both vertices are in
the same tree

(examples)



18-17: Kruskal’s Algorithm

We need to:

Put each vertex in its own tree

Given any two vertices v1 and v2, determine if
they are in the same tree

Given any two vertices v1 and v2, merge the
tree containing v1 and the tree containing v2

... sound familiar?



18-18: Kruskal’s Algorithm

Disjoint sets!

Create a list of all edges

Sort list of edges

For each edge e = (v1, v2) in the list

if FIND(v1) != FIND(v2)
Add e to spanning tree
UNION(v1, v2)



18-19: Prim’s Algorithm

Grow that spanning tree out from an initial vertex

Divide the graph into two sets of vertices

vertices in the spanning tree

vertices not in the spanning tree

Initially, Start vertex is in the spanning tree, all
other vertices are not in the tree

Pick the initial vertex arbitrarily



18-20: Prim’s Algorithm

While there are vertices not in the spanning tree

Add the cheapest vertex to the spanning tree



18-21: Prims’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1



18-22: Prim’s Algorithm

Use a table – much like Dijkstra table

Path has the same meaning

Cost is for vertex vk
cost to add vk to the tree

(instead of length of path to vk)



18-23: Prim’s Algorithm

Code for Prim’s algorithm is very similar to the
code for Dijkstra’s algorithm

Make one small change to Dijkstra’s algorithm to
get Prim’s algorithm



18-24: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}



18-25: Prim Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

e.cost) {

T[e.neighbor].distance = e.cost;

T[e.neighbor].path = v;

}

}

}

}


	{small lecturenumber -	heblocknumber :} Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Spanning Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MST Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} MST Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Minimal Cost Spanning Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Calculating MSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithm Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Kruskal's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prims's Algorithm Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim's Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dijkstra Codeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prim Codeaddtocounter {blocknumber}{1}

