Data Structures and Algorithms
CS245-2016S-18
Spanning Trees

David Galles
Department of Computer Science
University of San Francisco
Given a connected, undirected graph G

- A *subgraph* of G contains a subset of the vertices and edges in G

- A *Spanning Tree* T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic
18-1: Spanning Tree Examples

- Graph
18-2: Spanning Tree Examples

- Spanning Tree

Diagram:

```
0 -- 1
  
2 -- 3

5 -- 6
```
18-3: Spanning Tree Examples

- Graph

```
0 -- 1
|    |
|    |
2 -- 3 -- 4
|    |
|    |
5 -- 6
```
18-4: Spanning Tree Examples

- Spanning Tree

![Graph](image_url)
18-5: **Minimal Cost Spanning Tree**

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree
18-6: MST Example
18-7: MST Example
18-8: *Minimal Cost Spanning Trees*

- Can there be more than one minimal cost spanning tree for a particular graph?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

What happens when all edges have unit cost?
Can there be more than one minimal cost spanning tree for a particular graph?

YES!

- What happens when all edges have unit cost?
- All spanning trees are MSTs
Two algorithms to calculate MST:

- Kruskal’s Algorithm
 - Build a “forest” of spanning trees
 - Combine into one tree

- Prims Algorithm
 - Grow a single tree out from a start vertex
Kruskal’s Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
 - Add e to G if it would not cause a cycle
18-13: Kruskal’s Algorithm Examples
Proof (by contradiction)

Assume that no optimal MST T contains the minimum cost edge e

Add e to T, which causes a cycle

Remove an edge other than e to break the cycle

cost $T' \leq T$, a contradiction
Kruskal’s Algorithm

Coding Kruskal’s Algorithm:

- Place all edges into a list
- Sort list of edges by cost
- For each edge in the list
 - Select the edge if it does not form a cycle with previously selected edges
 - How can we do this?
18-16: Kruskal’s Algorithm

- Determining of adding an edge will cause a cycle
 - Start with a forest of V trees (each containing one node)
 - Each added edge merges two trees into one tree
 - An edge causes a cycle if both vertices are in the same tree
 - (examples)
Kruskal’s Algorithm

- We need to:
 - Put each vertex in its own tree
 - Given any two vertices v_1 and v_2, determine if they are in the same tree
 - Given any two vertices v_1 and v_2, merge the tree containing v_1 and the tree containing v_2
- ... sound familiar?
Kruskal’s Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge \(e = (v_1, v_2) \) in the list
 - if \(\text{FIND}(v_1) \neq \text{FIND}(v_2) \)
 - Add \(e \) to spanning tree
 - \(\text{UNION}(v_1, v_2) \)
Prim’s Algorithm

1. Grow that spanning tree out from an initial vertex.
2. Divide the graph into two sets of vertices:
 - vertices in the spanning tree
 - vertices not in the spanning tree
3. Initially, Start vertex is in the spanning tree, all other vertices are not in the tree.
 - Pick the initial vertex arbitrarily.
Prim’s Algorithm

- While there are vertices not in the spanning tree
 - Add the cheapest vertex to the spanning tree
Prim’s Algorithm

- Use a table – much like Dijkstra table
- Path has the same meaning
- Cost is for vertex v_k
 - cost to add v_k to the tree
 - (instead of length of path to v_k)
18-23: Prim’s Algorithm

- Code for Prim’s algorithm is very similar to the code for Dijkstra’s algorithm
- Make *one small change* to Dijkstra’s algorithm to get Prim’s algorithm
void Dijkstra(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for (i = 0; i < G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i = 0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance > T[v].distance + e.cost) {
 T[e.neighbor].distance = T[v].distance + e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}
void Dijkstra(Edge G[], int s, tableEntry T[]) {
 int i, v;
 Edge e;
 for(i=0; i<G.length; i++) {
 T[i].distance = Integer.MAX_VALUE;
 T[i].path = -1;
 T[i].known = false;
 }
 T[s].distance = 0;
 for (i=0; i < G.length; i++) {
 v = minUnknownVertex(T);
 T[v].known = true;
 for (e = G[v]; e != null; e = e.next) {
 if (T[e.neighbor].distance >
 e.cost) {
 T[e.neighbor].distance = e.cost;
 T[e.neighbor].path = v;
 }
 }
 }
}