21-0: **Strongly Connected Graph**

- Directed Path from every node to every other node

21-1: **Strongly Connected Graph**

- Directed Path from every node to every other node

21-2: **Connected Components**

- Subgraph (subset of the vertices) that is strongly connected.

21-3: **Connected Components**
• Subgraph (subset of the vertices) that is strongly connected.

21-4: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-5: Connected Components

• Subgraph (subset of the vertices) that is strongly connected.

21-6: Connected Components

• Connected components of the graph are the largest possible strongly connected subgraphs
• If we put each vertex in its own component – each component would be (trivially) strongly connected
 • Those would not be the connected components of the graph – unless there were no larger connected subgraphs

21-7: Connected Components

• Calculating Connected Components
Two vertices \(v_1 \) and \(v_2 \) are in the same connected component if and only if:
- Directed path from \(v_1 \) to \(v_2 \)
- Directed path from \(v_2 \) to \(v_1 \)
- To find connected components – find directed paths
 - Use DFS

21-8: DFS Revisited

- We can keep track of the order in which we visit the elements in a Depth-First Search
- For any vertex \(v \) in a DFS:
 - \(d[v] = \text{Discovery time} \) – when the vertex is first visited
 - \(f[v] = \text{Finishing time} \) – when we have finished with a vertex (and all of its children)

21-9: DFS Revisited

```java
class Edge {
    public int neighbor;
    public int next;
}

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
    Edge tmp;
    Visited[vertex] = true;
    d[vertex] = time++;
    for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
        if (!Visited[tmp.neighbor]) {
            DFS(G, tmp.neighbor, Visited);
        }
    }
    f[vertex] = time++;
}
```

21-10: DFS Revisited

- To visit every node in the graph:

```java
TraverseDFS(Edge G[]) {
    int i;
    boolean Visited = new boolean[G.length];
    int d = new int[G.length];
    int v = new int[G.length];
    time = 1;
    for (i=0; i<G.length; i++) {
        Visited[i] = false;
    }
    for (i=0; i<G.length; i++) {
        if (!Visited[i]) {
            DFS(G, i, Visited, d, f);
        }
    }
}
```

21-11: DFS Example
21-12: DFS Example

```
2 3 4 5 6
1 7
```

21-13: DFS Example

```
2 3 4 5 6
1 7
```

21-14: DFS Example
21-15: DFS Example

21-16: DFS Example
21-17: DFS Example

21-18: DFS Example
21-19: DFS Example

21-20: DFS Example
21-21: DFS Example

d 1 d 3 d 5 d 7
f f 8 f f
1 3 5 7

2 4 6 8

d 2 d 4 d 5 d
f f 7 f 6 f

21-22: DFS Example

d 1 d 3 d 5 d
f f 8 f f
1 3 5 7

2 4 6 8

d 2 d 4 d 5 d
f 9 f 7 f 6 f
21-23: DFS Example

21-24: DFS Example
21-25: DFS Example

21-26: DFS Example
21-27: DFS Example

21-28: DFS Example

21-29: DFS Example
21-30: DFS Example

21-31: DFS Example
21-32: DFS Example

21-33: DFS Example

21-34: DFS Example
21-35: DFS Example

d 1
f
1

2

d 2
f
21-36: DFS Example

d 1
f
1

2

d 2
f
21-35: DFS Example

d 1
f
1

2

d 2
f
21-36: DFS Example

d 1
f
1

2

d 2
f

21-37: DFS Example

```
d 1
f

1
```

```
d 4
f 7
f

3
```

```
d
f

5
```

```
d
f

7
```

```
d 2
f

2
```

```
d 3
f 8
f 6
f

4
```

```
d 5
f 6
f

6
```

```
d
f

8
```

21-38: DFS Example

```
d 1
f

1
```

```
d 4
f 7
f

3
```

```
d
f

5
```

```
d
f

7
```

```
d 2
f 9
f

2
```

```
d 3
f 8
f 6
f

4
```

```
d 5
f 6
f

6
```

```
d
f

8
```

21-39: DFS Example
21-40: DFS Example

21-41: DFS Example
21-42: DFS Example

21-43: DFS Example

21-44: DFS Example
21-45: **DFS Example**

\[
\begin{array}{cccc}
\text{d 1} & \text{d 4} & \text{d 11} & \text{d 13} \\
\text{f 10} & \text{f 7} & \text{f 16} & \text{f 14}
\end{array}
\]

![Diagram of DFS example](image)

21-46: **Using \(d[]\) & \(f[]\)**

- Given two vertices \(v_1\) and \(v_2\), what do we know if \(f[v_2] < f[v_1]\)?

21-47: **Using \(d[]\) & \(f[]\)**

- Given two vertices \(v_1\) and \(v_2\), what do we know if \(f[v_2] < f[v_1]\)?
 - Either:
 - Path from \(v_1\) to \(v_2\)
 - Start from \(v_1\)
 - Eventually visit \(v_2\)
 - Finish \(v_2\)
 - Finish \(v_1\)

21-48: **Using \(d[]\) & \(f[]\)**

- Given two vertices \(v_1\) and \(v_2\), what do we know if \(f[v_2] < f[v_1]\)?
 - Either:
 - Path from \(v_1\) to \(v_2\)
 - No path from \(v_2\) to \(v_1\)
 - Start from \(v_2\)
 - Eventually finish \(v_2\)
 - Start from \(v_1\)
 - Eventually finish \(v_1\)

21-49: **Using \(d[]\) & \(f[]\)**

- If \(f[v_2] < f[v_1]\):
 - Either a path from \(v_1\) to \(v_2\), or no path from \(v_2\) to \(v_1\)
 - If there is a path from \(v_2\) to \(v_1\), then there must be a path from \(v_1\) to \(v_2\)
• \(f[v_2] < f[v_1] \) and a path from \(v_2 \) to \(v_1 \) ⇒ \(v_1 \) and \(v_2 \) are in the same connected component

21-50: Calculating paths

• Path from \(v_2 \) to \(v_1 \) in \(G \) if and only if there is a path from \(v_1 \) to \(v_2 \) in \(G^T \)
 • \(G^T \) is the transpose of \(G - G \) with all edges reversed
• If after DFS, \(f[v_2] < f[v_1] \)
• Run second DFS on \(G^T \), starting from \(v_1 \), and \(v_1 \) and \(v_2 \) are in the same DFS spanning tree
• \(v_1 \) and \(v_2 \) must be in the same connected component

21-51: Connected Components

• Run DFS on \(G \), calculating \(f[] \) times
• Compute \(G^T \)
• Run DFS on \(G^T \) – examining nodes in inverse order of finishing times from first DFS
• Any nodes that are in the same DFS search tree in \(G^T \) must be in the same connected component

21-52: Connected Components Eg.

```
1
  ▼
  |  ▼
2     3
  ▼  ▼
  |  |  ▼
4     5     7
  ▼  ▼  ▼
  |  |  |  ▼
6     8
```

21-53: Connected Components Eg.

```
d 1  d 3  d 11  d 12
def 10 8 16 13
```

```
d 2  d 4  d 5  d 14
fdf 9 7 6 15
```

21-54: Connected Components Eg.
21-55: Connected Components Eg.

21-56: Connected Components Eg.

21-57: Connected Components Eg.
21-58: Connected Components Eg.

21-59: Connected Components Eg.

21-60: Topological Sort
• How could we use DFS to do a Topological Sort?
 • (Hint – Use discover and/or finish times)

21-61: Topological Sort

• How could we use DFS to do a Topological Sort?
 • (Hint – Use discover and/or finish times)
 • (What does it mean if node x finished before node y?)

21-62: Topological Sort

• How could we use DFS to do a Topological Sort?
 • Do DFS, computing finishing times for each vertex
 • As each vertex is finished, add to front of a linked list
 • This list is a valid topological sort