Algorithm Analysis

When is algorithm A better than algorithm B?
When is algorithm A better than algorithm B?

- Algorithm A runs faster
When is algorithm A better than algorithm B?

- Algorithm A runs faster
- Algorithm A requires less space to run
When is algorithm A better than algorithm B?

- Algorithm A runs faster
- Algorithm A requires less space to run

Space / Time Trade-off

- Can often create an algorithm that runs faster, by using more space

For now, we will concentrate on time efficiency
How long does the following function take to run:

```java
boolean find(int A[], int element) {
    for (i=0; i<A.length; i++) {
        if (A[i] == elem)
            return true;
    }
    return false;
}
```
How long does the following function take to run:

```java
boolean find(int A[], int elem) {
    for (i=0; i<A.length; i++) {
        if (A[i] == elem)
            return true;
    } return false;
}
```

It depends on if – and where – the element is in the list.
02-6: Best Case vs. Worst Case

- **Best Case** – What is the fastest that the algorithm can run
- **Worst Case** – What is the slowest that the algorithm can run
- **Average Case** – How long, on average, does the algorithm take to run

Worst Case performance is almost always important. *Usually*, Best Case performance is unimportant (why?) *Usually*, Average Case = Worst Case (but not always!)
How long does an algorithm take to run?
02-8: Measuring Time Efficiency

How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.
How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch. Problems:
 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under *exactly the same conditions*
How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch. Problems:
 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under exactly the same conditions
- Better Method: Build a mathematical model of the running time, use model to compare algorithms
02-11: Competing Algorithms

- **Linear Search**

  ```
  for (i=low; i <= high; i++)
    if (A[i] == elem) return true;
  return false;
  ```

- **Binary Search**

  ```
  int BinarySearch(int low, int high, elem) {
    if (low > high) return false;
    mid = (high + low) / 2;
    if (A[mid] == elem) return true;
    if (A[mid] < elem)
      return BinarySearch(mid+1, high, elem);
    else
      return BinarySearch(low, mid-1, elem);
  }
  ```
• Linear Search

```java
for (i=low; i <= high; i++)
    if (A[i] == elem) return true;
return false;
```

Time Required, for a problem of size n (worst case):
02-13: Linear vs Binary

• Linear Search

for (i=low; i <= high; i++)
 if (A[i] == elem) return true;
return false;

Time Required, for a problem of size \(n \) (worst case):

\[c_1 \times n \] for some constant \(c_1 \)
02-14: **Linear vs Binary**

- **Binary Search**

```c
int BinarySearch(int low, int high, elem) {
    if (low > high) return false;
    mid = (high + low) / 2;
    if (A[mid] == elem) return true;
    if (A[mid] < elem)
        return BinarySearch(mid+1, high, elem);
    else
        return BinarySearch(low, mid-1, elem);
}
```

Time Required, for a problem of size n (worst case):
02-15: **Linear vs Binary**

- **Binary Search**

```c
int BinarySearch(int low, int high, elem) {
    if (low > high) return false;
    mid = (high + low) / 2;
    if (A[mid] == elem) return true;
    if (A[mid] < elem)
        return BinarySearch(mid+1, high, elem);
    else
        return BinarySearch(low, mid-1, elem);
}
```

Time Required, for a problem of size \(n \) (worst case): \(c_2 \ast lg(n) \) for some constant \(c_2 \)
Do Constants Matter?

- Linear Search requires time $c_1 \times n$, for some c_1
- Binary Search requires time $c_2 \times \lg(n)$, for some c_2

What if there is a very high overhead cost for function calls?

What if c_2 is 1000 times larger than c_1?
02-17: Constants *Do Not* Matter!

<table>
<thead>
<tr>
<th>Length of list</th>
<th>Time Required for Linear Search</th>
<th>Time Required for Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.001 seconds</td>
<td>0.3 seconds</td>
</tr>
<tr>
<td>100</td>
<td>0.01 seconds</td>
<td>0.66 seconds</td>
</tr>
<tr>
<td>1000</td>
<td>0.1 seconds</td>
<td>1.0 seconds</td>
</tr>
<tr>
<td>10000</td>
<td>1 second</td>
<td>1.3 seconds</td>
</tr>
<tr>
<td>100000</td>
<td>10 seconds</td>
<td>1.7 seconds</td>
</tr>
<tr>
<td>1000000</td>
<td>2 minutes</td>
<td>2.0 seconds</td>
</tr>
<tr>
<td>100000000</td>
<td>17 minutes</td>
<td>2.3 seconds</td>
</tr>
<tr>
<td>10^{10}</td>
<td>11 days</td>
<td>3.3 seconds</td>
</tr>
<tr>
<td>10^{15}</td>
<td>30 centuries</td>
<td>5.0 seconds</td>
</tr>
<tr>
<td>10^{20}</td>
<td>300 million years</td>
<td>6.6 seconds</td>
</tr>
</tbody>
</table>
02-18: Growth Rate

We care about the *Growth Rate* of a function – how much more we can do if we add more processing power.

Faster Computers ≠ Solving Problems Faster
Faster Computers = Solving Larger Problems

- Modeling more variables
- Handling bigger databases
- Pushing more polygons
Growth Rate Examples

<table>
<thead>
<tr>
<th>time</th>
<th>$10n$</th>
<th>$5n$</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>n^3</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 s</td>
<td>1000</td>
<td>2000</td>
<td>1003</td>
<td>100</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>2 s</td>
<td>2000</td>
<td>4000</td>
<td>1843</td>
<td>141</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>20 s</td>
<td>20000</td>
<td>40000</td>
<td>14470</td>
<td>447</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>1 m</td>
<td>60000</td>
<td>120000</td>
<td>39311</td>
<td>774</td>
<td>84</td>
<td>19</td>
</tr>
<tr>
<td>1 hr</td>
<td>3600000</td>
<td>7200000</td>
<td>1736782</td>
<td>18973</td>
<td>331</td>
<td>25</td>
</tr>
</tbody>
</table>
When calculating a formula for the running time of an algorithm:
- Constants aren’t as important as the growth rate of the function
- Lower order terms don’t have much of an impact on the growth rate
 - $x^3 + x$ vs x^3
- We’d like a formal method for describing what is important when analyzing running time, and what is not.
02-21: Big-Oh Notation

$O(f(n))$ is the set of all functions that are bound from above by $f(n)$

$T(n) \in O(f(n))$ if

$\exists c, n_0$ such that $T(n) \leq c \times f(n)$ when $n > n_0$
02-22: Big-Oh Examples

\[n \in O(n) \ ? \]
\[10n \in O(n) \ ? \]
\[n \in O(10n) \ ? \]
\[n \in O(n^2) \ ? \]
\[n^2 \in O(n) \ ? \]
\[10n^2 \in O(n^2) \ ? \]
\[n \log n \in O(n^2) \ ? \]
\[\log n \in O(2n) \ ? \]
\[\log n \in O(n) \ ? \]
\[3n + 4 \in O(n) \ ? \]
\[5n^2 + 10n - 2 \in O(n^3) \ ? O(n^2) \ ? O(n) \ ? \]
Big-Oh Examples

\[n \in O(n) \]
\[10n \in O(n) \]
\[n \in O(10n) \]
\[n \in O(n^2) \]
\[n^2 \not\in O(n) \]
\[10n^2 \in O(n^2) \]
\[n \lg n \in O(n^2) \]
\[\ln n \in O(2n) \]
\[\lg n \in O(n) \]
\[3n + 4 \in O(n) \]
\[5n^2 + 10n - 2 \in O(n^3), \in O(n^2), \not\in O(n) \]
\(\sqrt{n} \in O(n) \) ?
\(\lg n \in O(2^n) \) ?
\(\lg n \in O(n) \) ?
\(n \lg n \in O(n) \) ?
\(n \lg n \in O(n^2) \) ?
\(\sqrt{n} \in O(\lg n) \) ?
\(\lg n \in O(\sqrt{n}) \) ?
\(n \lg n \in O(n^{3/2}) \) ?
\(n^3 + n \lg n + n\sqrt{n} \in O(n \lg n) \) ?
\(n^3 + n \lg n + n\sqrt{n} \in O(n^3) \) ?
\(n^3 + n \lg n + n\sqrt{n} \in O(n^4) \) ?
\[\sqrt{n} \in O(n) \]
\[\lg n \in O(2^n) \]
\[\lg n \in O(n) \]
\[n \lg n \notin O(n) \]
\[n \lg n \in O(n^2) \]
\[\sqrt{n} \notin O(\lg n) \]
\[\lg n \in O(\sqrt{n}) \]
\[n \lg n \in O(n^{\frac{3}{2}}) \]
\[n^3 + n \lg n + n\sqrt{n} \notin O(n \lg n) \]
\[n^3 + n \lg n + n\sqrt{n} \in O(n^3) \]
\[n^3 + n \lg n + n\sqrt{n} \in O(n^4) \]
02-26: Big-Oh Examples III

\[f(n) = \begin{cases}
 n & \text{for } n \text{ odd} \\
 n^3 & \text{for } n \text{ even}
\end{cases} \]

\[g(n) = n^2 \]

\[f(n) \in O(g(n)) \quad ? \]
\[g(n) \in O(f(n)) \quad ? \]
\[n \in O(f(n)) \quad ? \]
\[f(n) \in O(n^3) \quad ? \]
02-27: Big-Oh Examples III

\[f(n) = \begin{cases}
 n & \text{for } n \text{ odd} \\
 n^3 & \text{for } n \text{ even}
\end{cases} \]

\[g(n) = n^2 \]

\[f(n) \not\in O(g(n)) \]
\[g(n) \not\in O(f(n)) \]
\[n \in O(f(n)) \]
\[f(n) \in O(n^3) \]
02-28: **Big-Ω Notation**

\(\Omega(f(n)) \) is the set of all functions that are bound from *below* by \(f(n) \)

\[T(n) \in \Omega(f(n)) \text{ if} \]

\[\exists c, n_0 \text{ such that } T(n) \geq c \times f(n) \text{ when } n > n_0 \]
02-29: Big-Ω Notation

$\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$

$T(n) \in \Omega(f(n))$ if

$$\exists c, n_0 \text{ such that } T(n) \geq c \times f(n) \text{ when } n > n_0$$

$$f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))$$
02-30: **Big-Θ Notation**

Θ(f(n)) is the set of all functions that are bound *both* above *and* below by f(n). Θ is a *tight bound*

\[T(n) \in \Theta(f(n)) \text{ if } T(n) \in O(f(n)) \text{ and } T(n) \in \Omega(f(n)) \]
1. If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$

2. If $f(n) \in O(kg(n))$ for any constant $k > 0$, then $f(n) \in O(g(n))$

3. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$

4. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, then $f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n))$

(Also work for Ω, and hence Θ)
02-32: Big-Oh Guidelines

- Don’t include constants/low order terms in Big-Oh

- Simple statements: $\Theta(1)$

- Loops: $\Theta(\text{inside}) \times \# \text{ of iterations}$
 - Nested loops work the same way

- Consecutive statements: Longest Statement

- Conditional (if) statements:
 $O(\text{Test} + \text{longest branch})$
Calculating Big-Oh

```cpp
for (i=1; i<n; i++)
    sum++;
```
Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
 sum++;

Running time: $O(n), \Omega(n), \Theta(n)$
for (i=1; i<n; i=i+2)
 sum++;

02-35: Calculating Big-Oh
for (i=1; i<n; i=i+2) Executed n/2 times
 sum++;

Running time: $O(n), \Omega(n), \Theta(n)$
for (i=1; i<n; i++)
 for (j=1; j < n/2; j++)
 sum++;
Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
 for (j=1; j < n/2; j++) Executed n/2 times
 sum++;

Running time: $O(n^2), \Omega(n^2), \Theta(n^2)$
for (i=1; i<n; i=i*2)
 sum++;
for (i=1; i<n; i=i*2) Executed \lg n \text{ times}
 sum++;

Running Time: $O(\lg n), \Omega(\lg n), \Theta(\lg n)$
for (i=0; i<n; i++)
 for (j = 0; j<i; j++)
 sum++;
for (i=0; i<n; i++) Executed n times
 for (j = 0; j<i; j++) Executed <= n times
 sum++;

Running Time: $O(n^2)$. Also $\Omega(n^2)$?
for (i=0; i<n; i++)
 for (j = 0; j<i; j++)
 sum++;

Exact # of times `sum++` is executed:

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \in \Theta(n^2)
\]
sum = 0;
for (i=0; i<n; i++)
 sum++;
for (i=1; i<n; i=i*2)
 sum++;
Calculating Big-Oh

```
sum = 0;
for (i=0; i<n; i++)
    sum++;
for (i=1; i<n; i=i*2)
    sum++;
```

Running Time: $O(n)$, $\Omega(n)$, $\Theta(n)$
sum = 0;
for (i=0; i<n; i=i+2)
 sum++;
for (i=0; i<n/2; i=i+5)
 sum++;
02-47: Calculating Big-Oh

```
sum = 0;
for (i=0; i<n; i=i+2)  Executed n/2 times
    sum++;
for (i=0; i<n/2; i=i+5) Executed n/10 times
    sum++;

Running Time: $O(n), \Omega(n), \Theta(n)$
```
for (i=0; i<n; i++)
 for (j=1; j<n; j=j*2)
 for (k=1; k<n; k=k+2)
 sum++;
Calculating Big-Oh

for (i=0; i<n; i++) Executed n times
 for (j=1; j<n; j=j*2) Executed \text{lg} n times
 for (k=1; k<n; k=k+2) Executed \frac{n}{2} times
 sum++; O(1)

Running Time: \(O(n^2 \text{ lg } n), \Omega(n^2 \text{ lg } n), \Theta(n^2 \text{ lg } n) \)
sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<n; j++)
 sum++;
02-51: Calculating Big-Oh

sum = 0; \quad O(1)
for (i=1; i<n; i=i*2) \quad \text{Executed } \lg n \text{ times}
 for (j=0; j<n; j++) \quad \text{Executed } n \text{ times}
 sum++; \quad O(1)

Running Time: \(O(n \lg n), \Omega(n \lg n), \Theta(n \lg n) \)
sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;
Calculating Big-Oh

sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;

Running Time: $O(n \lg n)$. Also $\Omega(n \lg n)$?
sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;
of times sum++ is executed:

\[
\sum_{i=0}^{\lg n} 2^i = 2^{\lg n+1} - 1 = 2n - 1 \in \Theta(n)
\]
Of course, a little change can mess things up a bit ...

```
sum = 0;
for (i=1; i<=n; i=i+1)
    for (j=1; j<=i; j=j*2)
        sum++;
```
Calculating Big-Oh

Of course, a little change can mess things up a bit ...

```java
sum = 0;
for (i=1; i<=n; i=i+1)  // Executed n times
    for (j=1; j<=i; j=j*2)  // Executed <= lg n times
        sum++;  // O(1)
```

So, this is code is $O(n \lg n)$ – but is it also $\Omega(n \lg n)$?
Of course, a little change can mess things up a bit ...

```c
sum = 0;
for (i=1; i<=n; i=i+1)  // Executed n times
    for (j=1; j<=i; j=j*2)  // Executed <= lg n times
        sum++;  // O(1)
```

Total time `sum++` is executed:

\[
\sum_{i=1}^{n} \lg i
\]

This can be tricky to evaluate, but we only need a bound ...
Calculating Big-Oh

Total # of times \texttt{sum++} is executed:

\[
\sum_{i=1}^{n} \log i = \sum_{i=1}^{n/2-1} \log i + \sum_{i=n/2}^{n} \log i \\
\geq \sum_{i=n/2}^{n} \log i \\
\geq \sum_{i=n/2}^{n} \log n/2 \\
= n/2 \log n/2 \\
\in \Omega(n \log n)
\]