02-0: **Algorithm Analysis**
When is algorithm A better than algorithm B?

02-1: **Algorithm Analysis**
When is algorithm A better than algorithm B?

- Algorithm A runs faster

02-2: **Algorithm Analysis**
When is algorithm A better than algorithm B?

- Algorithm A runs faster
- Algorithm A requires less space to run

02-3: **Algorithm Analysis**
When is algorithm A better than algorithm B?

- Algorithm A runs faster
- Algorithm A requires less space to run

Space / Time Trade-off

- Can often create an algorithm that runs faster, by using more space

For now, we will concentrate on time efficiency

02-4: **Best Case vs. Worst Case**
How long does the following function take to run:

```java
boolean find(int A[], int element) {
    for (i=0; i<A.length; i++) {
        if (A[i] == element)
            return true;
    }
    return false;
}
```

02-5: **Best Case vs. Worst Case**
How long does the following function take to run:

```java
boolean find(int A[], int elem) {
    for (i=0; i<A.length; i++) {
        if (A[i] == elem)
            return true;
    }
    return false;
}
```

It depends on if – and where – the element is in the list

02-6: **Best Case vs. Worst Case**

- **Best Case** – What is the fastest that the algorithm can run
- **Worst Case** – What is the slowest that the algorithm can run
- **Average Case** – How long, on average, does the algorithm take to run
Worst Case performance is almost always important.

Usually, Best Case performance is unimportant (why?)

Usually, Average Case = Worst Case (but not always!)

02-7: **Measuring Time Efficiency**

How long does an algorithm take to run?

02-8: **Measuring Time Efficiency**

How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.

02-9: **Measuring Time Efficiency**

How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.

 Problems:

 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under *exactly the same conditions*

02-10: **Measuring Time Efficiency**

How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.

 Problems:

 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under *exactly the same conditions*

 - Better Method: Build a mathematical model of the running time, use model to compare algorithms

02-11: **Competing Algorithms**

- Linear Search

  ```
  for (i=low; i <= high; i++)
      if (A[i] == elem) return true;
  return false;
  ```

- Binary Search

  ```
  int BinarySearch(int low, int high, elem) {
      if (low > high) return false;
      mid = (high + low) / 2;
      if (A[mid] == elem) return true;
      if (A[mid] < elem)
          return BinarySearch(mid+1, high, elem);
      else
          return BinarySearch(low, mid-1, elem);
  }
  ```
02-12: **Linear vs Binary**

- **Linear Search**

  ```
  for (i=low; i <= high; i++)
    if (A[i] == elem) return true;
  return false;
  ```

 Time Required, for a problem of size \(n \) (worst case):

02-13: **Linear vs Binary**

- **Linear Search**

  ```
  for (i=low; i <= high; i++)
    if (A[i] == elem) return true;
  return false;
  ```

 Time Required, for a problem of size \(n \) (worst case):

 \[c_1 \times n \] for some constant \(c_1 \)

02-14: **Linear vs Binary**

- **Binary Search**

  ```
  int BinarySearch(int low, int high, elem) {
    if (low > high) return false;
    mid = (high + low) / 2;
    if (A[mid] == elem) return true;
    if (A[mid] < elem)
      return BinarySearch(mid+1, high, elem);
    else
      return BinarySearch(low, mid-1, elem);
  }
  ```

 Time Required, for a problem of size \(n \) (worst case):

02-15: **Linear vs Binary**

- **Binary Search**

  ```
  int BinarySearch(int low, int high, elem) {
    if (low > high) return false;
    mid = (high + low) / 2;
    if (A[mid] == elem) return true;
    if (A[mid] < elem)
      return BinarySearch(mid+1, high, elem);
    else
      return BinarySearch(low, mid-1, elem);
  }
  ```
Time Required, for a problem of size \(n \) (worst case): \(c_2 \cdot \lg(n) \) for some constant \(c_2 \)

02-16: Do Constants Matter?

- Linear Search requires time \(c_1 \cdot n \), for some \(c_1 \)
- Binary Search requires time \(c_2 \cdot \lg(n) \), for some \(c_2 \)

What if there is a very high overhead cost for function calls?

What if \(c_2 \) is 1000 times larger than \(c_1 \)?

02-17: Constants Do Not Matter!

<table>
<thead>
<tr>
<th>Length of list</th>
<th>Time Required for Linear Search</th>
<th>Time Required for Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.001 seconds</td>
<td>0.3 seconds</td>
</tr>
<tr>
<td>100</td>
<td>0.01 seconds</td>
<td>0.66 seconds</td>
</tr>
<tr>
<td>1000</td>
<td>0.1 seconds</td>
<td>1.0 seconds</td>
</tr>
<tr>
<td>10000</td>
<td>1 second</td>
<td>1.3 seconds</td>
</tr>
<tr>
<td>1000000</td>
<td>10 seconds</td>
<td>1.7 seconds</td>
</tr>
<tr>
<td>100000000</td>
<td>2 minutes</td>
<td>2.0 seconds</td>
</tr>
<tr>
<td>(10^{10})</td>
<td>17 minutes</td>
<td>2.3 seconds</td>
</tr>
<tr>
<td>(10^{15})</td>
<td>11 days</td>
<td>3.3 seconds</td>
</tr>
<tr>
<td>(10^{20})</td>
<td>30 centuries</td>
<td>5.0 seconds</td>
</tr>
<tr>
<td>(10^{30})</td>
<td>300 million years</td>
<td>6.6 seconds</td>
</tr>
</tbody>
</table>

02-18: Growth Rate

We care about the Growth Rate of a function – how much more we can do if we add more processing power

Faster Computers \(\neq \) Solving Problems Faster
Faster Computers = Solving Larger Problems

- Modeling more variables
- Handling bigger databases
- Pushing more polygons

02-19: Growth Rate Examples

<table>
<thead>
<tr>
<th>Time</th>
<th>Size of problem that can be solved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10(n)</td>
</tr>
<tr>
<td>1 s</td>
<td>1000</td>
</tr>
<tr>
<td>2 s</td>
<td>2000</td>
</tr>
<tr>
<td>20 s</td>
<td>20000</td>
</tr>
<tr>
<td>1 m</td>
<td>60000</td>
</tr>
<tr>
<td>1 hr</td>
<td>3600000</td>
</tr>
</tbody>
</table>

02-20: Constants and Running Times

- When calculating a formula for the running time of an algorithm:
 - Constants aren’t as important as the growth rate of the function
 - Lower order terms don’t have much of an impact on the growth rate
 - \(x^3 + x \) vs \(x^3 \)
 - We’d like a formal method for describing what is important when analyzing running time, and what is not.
02-21: **Big-Oh Notation**

\(O(f(n)) \) is the set of all functions that are bound from above by \(f(n) \)

\[T(n) \in O(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \leq c \times f(n) \text{ when } n > n_0 \]

02-22: **Big-Oh Examples**

\[n \in O(n) ? \]
\[10n \in O(n) ? \]
\[n \in O(10n) ? \]
\[n \in O(n^2) ? \]
\[n^2 \in O(n) ? \]
\[10n^2 \in O(n^2) ? \]
\[n \lg n \in O(n^2) ? \]
\[\ln n \in O(2n) ? \]
\[\lg n \in O(n) ? \]
\[3n + 4 \in O(n) ? \]
\[5n^2 + 10n - 2 \in O(n^2)? O(n^2) ? O(n) ? \]

02-23: **Big-Oh Examples**

\[n \in O(n) \]
\[10n \in O(n) \]
\[n \in O(10n) \]
\[n \in O(n^2) \]
\[n^2 \notin O(n) \]
\[10n^2 \in O(n^2) \]
\[n \lg n \in O(n^2) \]
\[\ln n \in O(2n) \]
\[\lg n \in O(n) \]
\[3n + 4 \in O(n) \]
\[5n^2 + 10n - 2 \in O(n^3), \notin O(n^2), \notin O(n) ? \]

02-24: **Big-Oh Examples II**

\[\sqrt{n} \in O(n) ? \]
\[\lg n \in O(2^n) ? \]
\[\lg n \in O(n) ? \]
\[n \lg n \in O(n) ? \]
\[n \lg n \in O(n^2) ? \]
\[\sqrt{n} \in O(\lg n) ? \]
\[\lg n \in O(\sqrt{n}) ? \]
\[n \lg n \in O(n^{3/2}) ? \]
\[n^3 + n \lg n + n\sqrt{n} \in O(n \lg n) ? \]
\[n^3 + n \lg n + n\sqrt{n} \in O(n^3) ? \]
\[n^3 + n \lg n + n\sqrt{n} \in O(n^4) ? \]

02-25: **Big-Oh Examples II**
\[\sqrt{n} \in O(n)\]
\[\lg n \in O(2^n)\]
\[\lg n \in O(n)\]
\[n \lg n \notin O(n)\]
\[n \lg n \in O(n^2)\]
\[\sqrt{n} \notin O(\lg n)\]
\[\lg n \in O(\sqrt{n})\]
\[n \lg n \in O(n^2)\]
\[n^3 + n \lg n + n \sqrt{n} \notin O(n \lg n)\]
\[n^3 + n \lg n + n \sqrt{n} \in O(n^3)\]
\[n^3 + n \lg n + n \sqrt{n} \in O(n^4)\]

02-26: **Big-Oh Examples III**

\[f(n) = \begin{cases}
n & \text{for } n \text{ odd} \\
n^3 & \text{for } n \text{ even} \end{cases}\]
\[g(n) = n^2\]

\[f(n) \in O(g(n)) ?\]
\[g(n) \in O(f(n)) ?\]
\[n \in O(f(n)) ?\]
\[f(n) \in O(n^3) ?\]

02-27: **Big-Oh Examples III**

\[f(n) = \begin{cases}
n & \text{for } n \text{ odd} \\
n^3 & \text{for } n \text{ even} \end{cases}\]
\[g(n) = n^2\]

\[f(n) \notin O(g(n))\]
\[g(n) \notin O(f(n))\]
\[n \in O(f(n))\]
\[f(n) \in O(n^3)\]

02-28: **Big-Ω Notation** \(\Omega(f(n))\) is the set of all functions that are bound from below by \(f(n)\)

\[T(n) \in \Omega(f(n)) \text{ if}\]

\[\exists c, n_0 \text{ such that } T(n) \geq c \cdot f(n) \text{ when } n > n_0\]

02-29: **Big-Ω Notation** \(\Omega(f(n))\) is the set of all functions that are bound from below by \(f(n)\)

\[T(n) \in \Omega(f(n)) \text{ if}\]

\[\exists c, n_0 \text{ such that } T(n) \geq c \cdot f(n) \text{ when } n > n_0\]

\[f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))\]

02-30: **Big-Θ Notation** \(\Theta(f(n))\) is the set of all functions that are bound *both* above and below by \(f(n)\). \(\Theta\) is a tight bound

\[T(n) \in \Theta(f(n)) \text{ if}\]
\[T(n) \in O(f(n)) \text{ and } T(n) \in \Omega(f(n)) \]

02-31: **Big-Oh Rules**

1. If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \)
2. If \(f(n) \in O(kg(n)) \) for any constant \(k > 0 \), then \(f(n) \in O(g(n)) \)
3. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n))) \)
4. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n)) \)

(Also work for \(\Omega \), and hence \(\Theta \))

02-32: **Big-Oh Guidelines**

- Don’t include constants/low order terms in Big-Oh
- Simple statements: \(\Theta(1) \)
- Loops: \(\Theta(\text{inside}) \times \# \text{ of iterations} \)
 - Nested loops work the same way
- Consecutive statements: Longest Statement
- Conditional (if) statements:
 \(O(\text{Test} + \text{longest branch}) \)

02-33: **Calculating Big-Oh**

```plaintext
for (i=1; i<n; i++)
    sum++;
```

02-34: **Calculating Big-Oh**

```plaintext
for (i=1; i<n; i++)
    sum++;
```

Running time: \(O(n), \Omega(n), \Theta(n) \)

02-35: **Calculating Big-Oh**

```plaintext
for (i=1; i<n; i=i+2)
    sum++;
```

02-36: **Calculating Big-Oh**

```plaintext
for (i=1; i<n; i=i+2)
    sum++;
```

Running time: \(O(n), \Omega(n), \Theta(n) \)

02-37: **Calculating Big-Oh**

```plaintext
for (i=1; i<n; i++)
    for (j=1; j < n/2; j++)
        sum++;
```
02-38: Calculating Big-Oh

\begin{verbatim}
for (i=1; i<n; i++) Executed n times
 for (j=1; j < n/2; j++) Executed n/2 times
 sum++; O(1)
\end{verbatim}

Running time: $O(n^2), \Omega(n^2), \Theta(n^2)$

02-39: Calculating Big-Oh

\begin{verbatim}
for (i=1; i<=n; i=i*2)
 sum++;
\end{verbatim}

02-40: Calculating Big-Oh

\begin{verbatim}
for (i=1; i<=n; i=i*2) Executed lg n times
 sum++; O(1)
\end{verbatim}

Running Time: $O(lg n), \Omega(lg n), \Theta(lg n)$

02-41: Calculating Big-Oh

\begin{verbatim}
for (i=0; i<n; i++)
 for (j = 0; j<i; j++)
 sum++; O(1)
\end{verbatim}

02-42: Calculating Big-Oh

\begin{verbatim}
for (i=0; i<n; i++) Executed n times
 for (j = 0; j<i; j++) Executed <= n times
 sum++; O(1)
\end{verbatim}

Running Time: $O(n^2)$. Also $\Omega(n^2)$?

02-43: Calculating Big-Oh

\begin{verbatim}
for (i=0; i<n; i++)
 for (j = 0; j<i; j++)
 sum++;
\end{verbatim}

Exact # of times sum++ is executed:

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \in \Theta(n^2)
\]

02-44: Calculating Big-Oh
sum = 0;
for (i=0; i<n; i++)
 sum++;
for (i=1; i<n; i=i*2)
 sum++;

02-45: Calculating Big-Oh

sum = 0; O(1)
for (i=0; i<n; i++) Executed n times
 sum++; O(1)
for (i=1; i<n; i=i*2) Executed lg n times
 sum++; O(1)

Running Time: $O(n), \Omega(n), \Theta(n)$

02-46: Calculating Big-Oh

sum = 0;
for (i=0; i<n; i=i+2)
 sum++;
for (i=0; i<n/2; i=i+5)
 sum++;

02-47: Calculating Big-Oh

sum = 0; O(1)
for (i=0; i<n; i=i+2) Executed n/2 times
 sum++; O(1)
for (i=0; i<n/2; i=i+5) Executed n/10 times
 sum++; O(1)

Running Time: $O(n), \Omega(n), \Theta(n)$

02-48: Calculating Big-Oh

for (i=0; i<n;i++)
 for (j=1; j<n; j=j*2)
 for (k=1; k<n; k=k+2)
 sum++;

02-49: Calculating Big-Oh

for (i=0; i<n;i++) Executed n times
 for (j=1; j<n; j=j*2) Executed lg n times
 for (k=1; k<n; k=k+2) Executed n/2 times
 sum++; O(1)

Running Time: $O(n^2 \lg n), \Omega(n^2 \lg n), \Theta(n^2 \lg n)$

02-50: Calculating Big-Oh
sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<n; j++)
 sum++;

02-51: Calculating Big-Oh

sum = 0; O(1)
for (i=1; i<n; i=i*2) Executed lg n times
 for (j=0; j<n; j++) Executed n times
 sum++; O(1)

Running Time: $O(n \log n), \Omega(n \log n), \Theta(n \log n)$

02-52: Calculating Big-Oh

sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;

02-53: Calculating Big-Oh

sum = 0; O(1)
for (i=1; i<n; i=i*2) Executed lg n times
 for (j=0; j<i; j++) Executed <= n times
 sum++; O(1)

Running Time: $O(n \log n)$. Also $\Omega(n \log n)$?

02-54: Calculating Big-Oh

sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;

of times sum++ is executed:

$$\sum_{i=0}^{\log n} 2^i = 2^{\log n + 1} - 1$$

$$= 2n - 1 \in \Theta(n)$$

02-55: Calculating Big-Oh

Of course, a little change can mess things up a bit ...

sum = 0;
for (i=1; i<=n; i=i+1)
 for (j=1; j<=i; j=j*2)
 sum++;
02-56: Calculating Big-Oh

Of course, a little change can mess things up a bit ...

```plaintext
sum = 0;
for (i=1; i<=n; i=i+1) Executed n times
   for (j=1; j<=i; j=j*2) Executed <= lg n times
      sum++; O(1)
```

So, this is code is $O(n \lg n)$ – but is it also $\Omega(n \lg n)$?

02-57: Calculating Big-Oh

Of course, a little change can mess things up a bit ...

```plaintext
sum = 0;
for (i=1; i<=n; i=i+1) Executed n times
   for (j=1; j<=i; j=j*2) Executed <= lg n times
      sum++; O(1)
```

Total time sum++ is executed:

$$\sum_{i=1}^{n} \lg i$$

This can be tricky to evaluate, but we only need a bound ...

02-58: Calculating Big-Oh

Total # of times sum++ is executed:

$$\sum_{i=1}^{n} \lg i \geq \sum_{i=n/2}^{n} \lg i$$

$$\sum_{i=n/2}^{n} \lg i \geq \sum_{i=n/2}^{n} \lg n/2$$

$$\sum_{i=n/2}^{n} \lg n/2 = n/2 \lg n/2 \in \Omega(n \lg n)$$