02-0: Algorithm Analysis
When is algorithm A better than algorithm B?

02-1: Algorithm Analysis
When is algorithm A better than algorithm B?

• Algorithm A runs faster

02-2: Algorithm Analysis
When is algorithm A better than algorithm B?

• Algorithm A runs faster
• Algorithm A requires less space to run

02-3: Algorithm Analysis
When is algorithm A better than algorithm B?

• Algorithm A runs faster
• Algorithm A requires less space to run

Space / Time Trade-off

• Can often create an algorithm that runs faster, by using more space

For now, we will concentrate on time efficiency

02-4: Best Case vs. Worst Case
How long does the following function take to run:

```java
boolean find(int A[], int element) {
    for (i=0; i<A.length; i++) {
        if (A[i] == elem)
            return true;
    }
    return false;
}
```

02-5: Best Case vs. Worst Case
How long does the following function take to run:

```java
boolean find(int A[], int elem) {
    for (i=0; i<A.length; i++) {
        if (A[i] == elem)
            return true;
    }
    return false;
}
```

It depends on if – and where – the element is in the list 02-6: Best Case vs. Worst Case

• Best Case – What is the fastest that the algorithm can run
• Worst Case – What is the slowest that the algorithm can run
• Average Case – How long, on average, does the algorithm take to run
Worst Case performance is almost always important.
Usually, Best Case performance is unimportant (why?)
Usually, Average Case = Worst Case (but not always!)

02-7: **Measuring Time Efficiency**
How long does an algorithm take to run?

02-8: **Measuring Time Efficiency**
How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.

02-9: **Measuring Time Efficiency**
How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.
 Problems:
 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under *exactly the same conditions*

02-10: **Measuring Time Efficiency**
How long does an algorithm take to run?

- Implement on a computer, time using a stopwatch.
 Problems:
 - Not just testing algorithm – testing implementation of algorithm
 - Implementation details (cache performance, other programs running in the background, etc) can affect results
 - Hard to compare algorithms that are not tested under *exactly the same conditions*
 - Better Method: Build a mathematical model of the running time, use model to compare algorithms

02-11: **Competing Algorithms**

- Linear Search

  ```java
  for (i=low; i <= high; i++)
      if (A[i] == elem) return true;
  return false;
  ```

- Binary Search

  ```java
  int BinarySearch(int low, int high, elem) {
      if (low > high) return false;
      mid = (high + low) / 2;
      if (A[mid] == elem) return true;
      if (A[mid] < elem)
          return BinarySearch(mid+1, high, elem);
      else
          return BinarySearch(low, mid-1, elem);
  }
  ```
02-12: Linear vs Binary

- Linear Search

    ```
    for (i=low; i <= high; i++)
        if (A[i] == elem) return true;
    return false;
    ```

 Time Required, for a problem of size \(n \) (worst case):

02-13: Linear vs Binary

- Linear Search

    ```
    for (i=low; i <= high; i++)
        if (A[i] == elem) return true;
    return false;
    ```

 Time Required, for a problem of size \(n \) (worst case):

 \(c_1 * n \) for some constant \(c_1 \)

02-14: Linear vs Binary

- Binary Search

    ```
    int BinarySearch(int low, int high, elem) {
        if (low > high) return false;
        mid = (high + low) / 2;
        if (A[mid] == elem) return true;
        if (A[mid] < elem)
            return BinarySearch(mid+1, high, elem);
        else
            return BinarySearch(low, mid-1, elem);
    }
    ```

 Time Required, for a problem of size \(n \) (worst case):

02-15: Linear vs Binary

- Binary Search

    ```
    int BinarySearch(int low, int high, elem) {
        if (low > high) return false;
        mid = (high + low) / 2;
        if (A[mid] == elem) return true;
        if (A[mid] < elem)
            return BinarySearch(mid+1, high, elem);
        else
            return BinarySearch(low, mid-1, elem);
    }
    ```
Time Required, for a problem of size \(n \) (worst case): \(c_2 \cdot \lg(n) \) for some constant \(c_2 \)

02-16: **Do Constants Matter?**

- Linear Search requires time \(c_1 \cdot n \), for some \(c_1 \)
- Binary Search requires time \(c_2 \cdot \lg(n) \), for some \(c_2 \)

What if there is a very high overhead cost for function calls?

What if \(c_2 \) is \textit{1000 times larger} than \(c_1 \)?

02-17: **Constants Do Not Matter!**

<table>
<thead>
<tr>
<th>Length of list</th>
<th>Time Required for Linear Search</th>
<th>Time Required for Binary Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.001 seconds</td>
<td>0.3 seconds</td>
</tr>
<tr>
<td>100</td>
<td>0.01 seconds</td>
<td>0.66 seconds</td>
</tr>
<tr>
<td>1000</td>
<td>0.1 seconds</td>
<td>1.0 seconds</td>
</tr>
<tr>
<td>10000</td>
<td>1 second</td>
<td>1.3 seconds</td>
</tr>
<tr>
<td>1000000</td>
<td>10 seconds</td>
<td>1.7 seconds</td>
</tr>
<tr>
<td>10000000</td>
<td>2 minutes</td>
<td>2.0 seconds</td>
</tr>
<tr>
<td>(10^{10})</td>
<td>17 minutes</td>
<td>2.3 seconds</td>
</tr>
<tr>
<td>(10^{15})</td>
<td>30 centuries</td>
<td>5.0 seconds</td>
</tr>
<tr>
<td>(10^{20})</td>
<td>300 million years</td>
<td>6.6 seconds</td>
</tr>
</tbody>
</table>

02-18: **Growth Rate**

We care about the \textit{Growth Rate} of a function – how much more we can do if we add more processing power

Faster Computers \(\neq \) Solving Problems Faster
Faster Computers = Solving Larger Problems

- Modeling more variables
- Handling bigger databases
- Pushing more polygons

02-19: **Growth Rate Examples**

<table>
<thead>
<tr>
<th>time</th>
<th>Size of problem that can be solved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 s</td>
<td>10n, 5n, n\lg n, n^2, n^3, 2^n</td>
</tr>
<tr>
<td>2 s</td>
<td>2000, 4000, 14470, 141, 27, 14</td>
</tr>
<tr>
<td>20 s</td>
<td>20000, 40000, 39311, 774, 84, 19</td>
</tr>
<tr>
<td>1 m</td>
<td>600000, 1200000, 1736782, 18973, 331, 25</td>
</tr>
<tr>
<td>1 hr</td>
<td>36000000, 72000000, 1736782, 18973, 331, 25</td>
</tr>
</tbody>
</table>

02-20: **Constants and Running Times**

- When calculating a formula for the running time of an algorithm:
 - Constants aren’t as important as the growth rate of the function
 - Lower order terms don’t have much of an impact on the growth rate
 - \(x^3 + x \) vs \(x^3 \)
 - We’d like a formal method for describing what is important when analyzing running time, and what is not.
02-21: **Big-Oh Notation**

$O(f(n))$ is the set of all functions that are bound from above by $f(n)$

$T(n) \in O(f(n))$ if

$\exists c, n_0$ such that $T(n) \leq c \cdot f(n)$ when $n > n_0$

02-22: Big-Oh Examples

$\begin{align*}
n & \in O(n) \\
10n & \in O(n) \\
n & \in O(10n) \\
n & \in O(n^2) \\
n^2 & \in O(n) \\
10n^2 & \in O(n^2) \\
n \lg n & \in O(n^2) \\
\ln n & \in O(2n) \\
\lg n & \in O(n) \\
3n + 4 & \in O(n)
\end{align*}$

$5n^2 + 10n - 2 \in O(n^3) \times O(n^2) \times O(n)$

02-23: Big-Oh Examples

$\begin{align*}
n & \in O(n) \\
10n & \in O(n) \\
n & \in O(10n) \\
n & \in O(n^2) \\
n^2 & \notin O(n) \\
10n^2 & \in O(n^2) \\
n \lg n & \in O(n^2) \\
\ln n & \in O(2n) \\
\lg n & \in O(n) \\
3n + 4 & \in O(n)
\end{align*}$

$5n^2 + 10n - 2 \in O(n^3), \times O(n^2), \notin O(n)$

02-24: Big-Oh Examples II

$\begin{align*}
\sqrt{n} & \in O(n) \\
\lg n & \in O(2^n) \\
\lg n & \in O(n) \\
n \lg n & \in O(n) \\
n \lg n & \in O(n^2) \\
\sqrt{n} & \in O(\lg n) \\
\lg n & \in O(\sqrt{n}) \\
n \lg n & \in O(n^{3/2}) \\
n^3 + n \lg n + n\sqrt{n} & \in O(n \lg n) \\
n^3 + n \lg n + n\sqrt{n} & \in O(n^3) \\
n^3 + n \lg n + n\sqrt{n} & \in O(n^4)
\end{align*}$

02-25: Big-Oh Examples II
\(\sqrt{n} \in O(n)\)
\(\lg n \in O(2^n)\)
\(\lg n \in O(n)\)
\(n \lg n \not\in O(n)\)
\(n \lg n \in O(n^2)\)
\(\sqrt{n} \not\in O(\lg n)\)
\(\lg n \in O(\sqrt{n})\)
\(n \lg n \in O(n^2)\)
\(n^3 + n \lg n + n\sqrt{n} \not\in O(n \lg n)\)
\(n^3 + n \lg n + n\sqrt{n} \in O(n^3)\)
\(n^3 + n \lg n + n\sqrt{n} \in O(n^4)\)

02-26: **Big-Oh Examples III**

\[
f(n) = \begin{cases} n & \text{for } n \text{ odd} \\ n^3 & \text{for } n \text{ even} \end{cases}
g(n) = n^2
\]

\[
f(n) \in O(g(n))? \quad g(n) \in O(f(n))? \quad n \in O(f(n))? \quad f(n) \in O(n^3)?
\]

02-27: **Big-Oh Examples III**

\[
f(n) = \begin{cases} n & \text{for } n \text{ odd} \\ n^3 & \text{for } n \text{ even} \end{cases}
g(n) = n^2
\]

\[
f(n) \not\in O(g(n)) \quad g(n) \not\in O(f(n)) \quad n \in O(f(n)) \quad f(n) \in O(n^3)
\]

02-28: **Big-Ω Notation** \(\Omega(f(n))\) is the set of all functions that are bound from below by \(f(n)\)

\[T(n) \in \Omega(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \geq c \ast f(n) \text{ when } n > n_0\]

02-29: **Big-Ω Notation** \(\Omega(f(n))\) is the set of all functions that are bound from below by \(f(n)\)

\[T(n) \in \Omega(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \geq c \ast f(n) \text{ when } n > n_0\]

\[f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))\]

02-30: **Big-Θ Notation** \(\Theta(f(n))\) is the set of all functions that are bound both above and below by \(f(n)\). \(\Theta\) is a tight bound

\[T(n) \in \Theta(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \geq c \ast f(n) \text{ and } T(n) \leq c \ast f(n) \text{ when } n > n_0\]
\(T(n) \in O(f(n)) \) and \(T(n) \in \Omega(f(n)) \)

02-31: **Big-Oh Rules**

1. If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \)

2. If \(f(n) \in O(kg(n)) \) for any constant \(k > 0 \), then \(f(n) \in O(g(n)) \)

3. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n))) \)

4. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) \times f_2(n) \in O(g_1(n) \times g_2(n)) \)

(Also work for \(\Omega \), and hence \(\Theta \))

02-32: **Big-Oh Guidelines**

- Don’t include constants/low order terms in Big-Oh

- Simple statements: \(\Theta(1) \)

- Loops: \(\Theta(\text{inside}) \times \# \text{ of iterations} \)
 - Nested loops work the same way

- Consecutive statements: Longest Statement

- Conditional (if) statements: \(O(\text{Test + longest branch}) \)

02-33: **Calculating Big-Oh**

```c
for (i=1; i<n; i++)
  sum++;
```

02-34: **Calculating Big-Oh**

```c
for (i=1; i<n; i++) // Executed n times
  sum++;
```

Running time: \(O(n), \Omega(n), \Theta(n) \)

02-35: **Calculating Big-Oh**

```c
for (i=1; i<n; i=i+2)
  sum++;
```

02-36: **Calculating Big-Oh**

```c
for (i=1; i<n; i=i+2) // Executed n/2 times
  sum++;
```

Running time: \(O(n), \Omega(n), \Theta(n) \)

02-37: **Calculating Big-Oh**

```c
for (i=1; i<n; i++)
  for (j=1; j < n/2; j++)
    sum++;
```
02-38: **Calculating Big-Oh**

```c
for (i=1; i<n; i++) Executed n times
  for (j=1; j < n/2; j++) Executed n/2 times
    sum++; O(1)
```

Running time: \(O(n^2), \Omega(n^2), \Theta(n^2)\)

02-39: **Calculating Big-Oh**

```c
for (i=0; i<n; i=i*2)
  sum++; 
```

02-40: **Calculating Big-Oh**

```c
for (i=1; i<n; i=i*2) Executed lg n times
  sum++; O(1)
```

Running Time: \(O(lg n), \Omega(lg n), \Theta(lg n)\)

02-41: **Calculating Big-Oh**

```c
for (i=0; i<n; i++)
  for (j = 0; j<i; j++)
    sum++; 
```

02-42: **Calculating Big-Oh**

```c
for (i=0; i<n; i++) Executed n times
  for (j = 0; j<i; j++) Executed <= n times
    sum++; O(1)
```

Running Time: \(O(n^2)\). Also \(\Omega(n^2)\)?

02-43: **Calculating Big-Oh**

```c
for (i=0; i<n; i++)
  for (j = 0; j<i; j++)
    sum++; 
```

Exact # of times `sum++` is executed:

\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \in \Theta(n^2)
\]

02-44: **Calculating Big-Oh**
sum = 0;
for (i=0; i<n; i++)
 sum++;
for (i=1; i<n; i=i*2)
 sum++;

02-45: Calculating Big-Oh

\[
\text{sum} = 0; \quad O(1)
\]
for (i=0; i<n; i++) \quad \text{Executed } n \text{ times}
\[
\text{sum}++; \quad O(1)
\]
for (i=1; i<n; i=i*2) \quad \text{Executed } \lg n \text{ times}
\[
\text{sum}++; \quad O(1)
\]

Running Time: \(O(n), \Omega(n), \Theta(n)\)

02-46: Calculating Big-Oh

sum = 0;
for (i=0; i<n; i=i+2)
 sum++;
for (i=0; i<n/2; i=i+5)
 sum++;

02-47: Calculating Big-Oh

\[
\text{sum} = 0; \quad O(1)
\]
for (i=0; i<n; i=i+2) \quad \text{Executed } n/2 \text{ times}
\[
\text{sum}++; \quad O(1)
\]
for (i=0; i<n/2; i=i+5) \quad \text{Executed } n/10 \text{ times}
\[
\text{sum}++; \quad O(1)
\]

Running Time: \(O(n), \Omega(n), \Theta(n)\)

02-48: Calculating Big-Oh

for (i=0; i<n;i++)
 for (j=1; j<n; j=j*2)
 for (k=1; k<n; k=k+2)
 sum++;

02-49: Calculating Big-Oh

\[
\text{for (i=0; i<n; i++)} \quad \text{Executed } n \text{ times}
\]
\[
\text{for (j=1; j<n; j=j*2)} \quad \text{Executed } \lg n \text{ times}
\]
\[
\text{for (k=1; k<n; k=k+2)} \quad \text{Executed } n/2 \text{ times}
\]
\[
\text{sum}++; \quad O(1)
\]

Running Time: \(O(n^2 \lg n), \Omega(n^2 \lg n), \Theta(n^2 \lg n)\)

02-50: Calculating Big-Oh
sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<n; j++)
 sum++;

02-51: Calculating Big-Oh

sum = 0; \quad O(1)
for (i=1; i<n; i=i*2) \quad \text{Executed } \lg n \text{ times}
 for (j=0; j<n; j++) \quad \text{Executed } n \text{ times}
 sum++; \quad O(1)

Running Time: \(O(n \lg n), \Omega(n \lg n), \Theta(n \lg n) \)

02-52: Calculating Big-Oh

sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;

02-53: Calculating Big-Oh

sum = 0; \quad O(1)
for (i=1; i<n; i=i*2) \quad \text{Executed } \lg n \text{ times}
 for (j=0; j<i; j++) \quad \text{Executed } \leq n \text{ times}
 sum++; \quad O(1)

Running Time: \(O(n \lg n) \). Also \(\Omega(n \lg n) \) ?

02-54: Calculating Big-Oh

sum = 0;
for (i=1; i<n; i=i*2)
 for (j=0; j<i; j++)
 sum++;

of times sum++ is executed:

\[
\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} 2^i = 2^{\lfloor \frac{n}{2} \rfloor} - 1 \\
= 2n - 1 \\
\in \Theta(n)
\]

02-55: Calculating Big-Oh

Of course, a little change can mess things up a bit ...

sum = 0;
for (i=1; i<=n; i=i+1)
 for (j=1; j<=i; j=j*2)
 sum++;
02-56: **Calculating Big-Oh**

Of course, a little change can mess things up a bit ...

```c
sum = 0;
for (i=1; i<=n; i=i+1) // Executed n times
    for (j=1; j<=i; j=j*2) // Executed <= lg n times
        sum++; // O(1)
```

So, this is code is $O(n \lg n)$ – but is it also $\Omega(n \lg n)$?

02-57: **Calculating Big-Oh**

Of course, a little change can mess things up a bit ...

```c
sum = 0;
for (i=1; i<=n; i=i+1) // Executed n times
    for (j=1; j<=i; j=j*2) // Executed <= lg n times
        sum++; // O(1)
```

Total time `sum++` is executed:

$$\sum_{i=1}^{n} \lg i$$

This can be tricky to evaluate, but we only need a bound ...

02-58: **Calculating Big-Oh**

Total # of times `sum++` is executed:

$$\sum_{i=1}^{n} \lg i \geq \sum_{i=n/2}^{n} \lg i$$

$$\geq \sum_{i=n/2}^{n} \lg n/2$$

$$= n/2 \lg n/2$$

$$\in \Omega(n \lg n)$$