20-0: **Indexing**

- Operations:
 - Add an element
 - Remove an element
 - Find an element, using a key
 - Find all elements in a range of key values

20-1: **Indexing**

- Sorted List
 - Find / Find in Range fast
 - Add / Remove slow

- Unsorted List / Hash Table
 - Add, Find, Remove fast (hash)
 - Find in Range slow

- Binary Search Tree
 - All operations are fast (O(lg n))
 - *if* the tree is balanced

20-2: **Indexing**

- Generalized Binary Search Trees
 - Each node can store several keys, instead of just one
 - Values in subtrees between values in surrounding keys
 - For non leaves, # of children = # of keys + 1

![Diagram of a 2-3 tree](image)

20-3: **2-3 Trees**

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth
20-4: Example 2-3 Tree

20-5: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?

20-6: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true
 - Otherwise, recursively find in the appropriate subtree

20-7: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf

20-8: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?

20-9: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!
20-10: Splitting Nodes

```
5 6 7
```

20-11: Splitting Nodes

```
4
```

```
1 2
```

```
5 6 7
```

Too many elements

20-12: Splitting Nodes

```
4
```

```
1 2
```

```
5 6 7
```

Promote to parent

```
Left child of 6
```

```
Right child of 6
```

20-13: Splitting Nodes
20-14: **Splitting Root**

- When we split the root:
 - Create a new root
 - Tree grows in height by 1

20-15: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  1
```

20-16: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  1 2
```

20-17: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  1 2 3
```

Too many keys, need to split

20-18: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2
  /\  
 1   3
```

20-19: **2-3 Tree Example**
• Inserting elements 1-9 (in order) into a 2-3 tree

20-20: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split

20-21: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

20-22: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

20-23: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys need to split
20-24: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2  4  6
 / \ / \ / \
1   3 5   7
```

Too many keys need to split

20-25: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  4
 / \ / \ / \
2   6
 / \ / \ / \
1   3 5   7
```

20-26: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  4
 / \ / \ / \
2   6
 / \ / \ / \
1   3 5   7 8
```

20-27: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree
20-28: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

![2-3 Tree Example Diagram]

20-29: **Deleting from 2-3 Tree**

- As with BSTs, we will have 2 cases:
 - Deleting a key from a leaf
 - Deleting a key from an internal node

20-30: **Deleting Leaves**

- If leaf contains 2 keys
 - Can safely remove a key

20-31: **Deleting Leaves**

- Deleting 7
20-32: Deleting Leaves

- Deleting 7

20-33: Deleting Leaves

- If leaf contains 1 key
 - Cannot remove key without making leaf empty
 - Try to steal extra key from sibling

20-34: Deleting Leaves

- Deleting 3 – we can steal the 5

20-35: Deleting Leaves

- Not a 2-3 tree. What can we do?

20-36: Deleting Leaves
• Steal key from sibling \textit{through parent}

20-37: \textbf{Deleting Leaves}

• Steal key from sibling \textit{through parent}

20-38: \textbf{Deleting Leaves}

• If leaf contains 1 key, and no sibling contains extra keys
 • Cannot remove key without making leaf empty
 • Cannot steal a key from a sibling
 • Merge with sibling
 • split in reverse

20-39: \textbf{Merging Nodes}

• Removing the 4

20-40: \textbf{Merging Nodes}
• Removing the 4
• Combine 5, 7 into one node

20-41: Merging Nodes

20-42: Merging Nodes
 • Merge decreases the number of keys in the parent
 • May cause parent to have too few keys
 • Parent can steal a key, or merge again

20-43: Merging Nodes
 • Deleting the 3 – cause a merge

20-44: Merging Nodes
• Deleting the 3 – cause a merge
• Not enough keys in parent

20-45: **Merging Nodes**

• Steal key from sibling

20-46: **Merging Nodes**

• Steal key from sibling

20-47: **Merging Nodes**

• When we steal a key from an internal node, steal nearest subtree as well
20-48: **Merging Nodes**

When we steal a key from an internal node, steal nearest subtree as well

20-49: **Merging Nodes**

- Deleting the 7 – cause a merge

20-50: **Merging Nodes**

- Parent has too few keys – merge again

20-51: **Merging Nodes**

- Root has no keys – delete
20-52: Merging Nodes

```
4 6
1 2 5 8 9
```

20-53: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
 - *HINT*: How did we delete non-leaf nodes in standard BSTs?

20-54: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursively delete smallest element from subtree to right of key
 - (can also use largest element in subtree to left of key)

20-55: Deleting Interior Keys

```
4
2
1 3
7
5 6
8 9
```

- Deleting the 4

20-56: Deleting Interior Keys

```
4
2
1 3
7
5 6
8 9
```

- Deleting the 4
 - Replace 4 with smallest element in tree to right of 4
20-57: Deleting Interior Keys

```
    5
   /|
  2 7
 /|
1 3 6
```

20-58: Deleting Interior Keys

```
    5
   /|
  2 7
 /|
1 3 6
```

- Deleting the 5

20-59: Deleting Interior Keys

```
    5
   /|
  2 7
 /|
1 3 6
```

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

20-60: Deleting Interior Keys

```
    6
   /|
  2 7
 /|
1 3 8 9
```

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
• Node with two few keys

20-61: Deleting Interior Keys

![Diagram of a B-tree node with two few keys.]

• Node with two few keys
• Steal a key from a sibling

20-62: Deleting Interior Keys

![Diagram of a B-tree node with two few keys.]

20-63: Deleting Interior Keys

![Diagram of a B-tree node with two few keys.]

• Removing the 6

20-64: Deleting Interior Keys

![Diagram of a B-tree node with two few keys.]

• Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

20-65: Deleting Interior Keys

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling

20-66: Deleting Interior Keys

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)

20-67: Deleting Interior Keys

- In 2-3 Trees:
 - Each node has 1 or 2 keys
 - Each interior node has 2 or 3 children
• We can generalize 2-3 trees to allow more keys / node

20-69: **B-Trees**

• A B-Tree of maximum degree k:
 • All interior nodes have $\lceil k/2 \rceil \ldots k$ children
 • All nodes have $\lceil k/2 \rceil - 1 \ldots k - 1$ keys
• 2-3 Tree is a B-Tree of maximum degree 3

20-70: **B-Trees**

```
  5   11   16   19
  |   |   |   |
  1   3   7   8   9
  |   |   |   |
  12  15  17  18
  |   |   |   |
  22  23
```

• B-Tree with maximum degree 5
 • Interior nodes have 3 – 5 children
 • All nodes have 2-4 keys

20-71: **B-Trees**

• Inserting into a B-Tree
 • Find the leaf where the element would go
 • If the leaf is not full, insert the element into the leaf
 • Otherwise, split the leaf (which may cause further splits up the tree), and insert the element

20-72: **B-Trees**

```
  5   11   16   19
  |   |   |   |
  1   3   7   8   9
  |   |   |   |
  12  15  17  18
  |   |   |   |
  22  23
```

• Inserting a 6 ..

20-73: **B-Trees**

```
  5   11   16   19
  |   |   |   |
  1   3   6   7   8   9
  |   |   |   |
  12  15  17  18
  |   |   |   |
  22  23
```

20-74: **B-Trees**
• Inserting a 10...

20-75: B-Trees

```
5 11 16 19
1 3 6 7 8 9 12 15 17 18 22 23
```

Too many keys need to split

• Promote 8 to parent (between 5 and 11)
• Make nodes out of (6, 7) and (9, 10)

20-76: B-Trees

```
5 11 16 19
1 3 6 7 8 9 10 12 15 17 18 22 23
```

Too many keys need to split

• Promote 11 to parent (new root)
• Make nodes out of (5, 8) and (6, 19)

20-77: B-Trees

```
16 19
1 3 9 10 12 15 17 18
```

5 8
6 7
9 10
12 15
17 18
22 23

• Note that the root only has 1 key, 2 children
• All nodes in B-Trees with maximum degree 5 should have at least 2 keys
• The root is an exception – it may have as few as one key and two children for any maximum degree
20-78: **B-Trees**

- B-Tree of maximum degree \(k \)
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have \(\lceil k/2 \rceil - 1 \ldots k - 1 \) keys
 - All interior nodes (other than the root) have \(\lceil k/2 \rceil \ldots k \) children

20-79: **B-Trees**

- B-Tree of maximum degree \(k \)
 - Generalized BST
 - All leaves are at the same depth
 - All nodes (other than the root) have \(\lceil k/2 \rceil - 1 \ldots k - 1 \) keys
 - All interior nodes (other than the root) have \(\lceil k/2 \rceil \ldots k \) children

- Why do we need to make exceptions for the root?

20-80: **B-Trees**

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element

20-81: **B-Trees**

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element
 - Consider a B-Tree of maximum degree 5 with 5 elements

20-82: **B-Trees**

- Why do we need to make exceptions for the root?
 - Consider a B-Tree of maximum degree 5 with only one element
 - Consider a B-Tree of maximum degree 5 with 5 elements
 - Even when a B-Tree could be created for a specific number of elements, creating an exception for the root allows our split/merge algorithm to work correctly.

20-83: **B-Trees**

- Deleting from a B-Tree (Key is in a leaf)
 - Remove key from leaf
 - Steal / Split as necessary
 - May need to split up tree as far as root
20-84: **B-Trees**

- Deleting the 15

20-85: **B-Trees**

- Too few keys

20-86: **B-Trees**

- Steal a key from sibling

20-87: **B-Trees**

- Delete the 11

20-88: **B-Trees**

- Too few keys
20-90: **B-Trees**

- Merge with a sibling (pick the left sibling arbitrarily)

20-91: **B-Trees**

20-92: **B-Trees**

- Deleting from a B-Tree (Key in internal node)
 - Replace key with largest key in right subtree
 - Remove largest key from right subtree
 - (May force steal / merge)

20-93: **B-Trees**

- Remove the 5

20-94: **B-Trees**

- Remove the 5

20-95: **B-Trees**
20-96: B-Trees

• Remove the 19

20-97: B-Trees

• Remove the 19

20-98: B-Trees

Too few keys

20-99: B-Trees

• Merge with left sibling

20-100: B-Trees

20-101: B-Trees

• Almost all databases that are large enough to require storage on disk use B-Trees

• Disk accesses are very slow
 • Accessing a byte from disk is 10,000 – 100,000 times as slow as accessing from main memory
Recently, this gap has been getting even bigger

- Compared to disk accesses, all other operations are essentially free
- Most efficient algorithm minimizes disk accesses as much as possible

20-102: **B-Trees**

- Disk accesses are slow – want to minimize them
- Single disk read will read an entire sector of the disk
- Pick a maximum degree k such that a node of the B-Tree takes up exactly one disk block
 - Typically on the order of 100 children / node

20-103: **B-Trees**

- With a maximum degree around 100, B-Trees are very shallow
- Very few disk reads are required to access any piece of data
- Can improve matters even more by keeping the first few levels of the tree in main memory
 - For large databases, we can’t store the entire tree in main memory – but we can limit the number of disk accesses for each operation to only 1 or 2