Data Structures and Algorithms
CS245-2017S-23
NP-Completeness and Undecidability

David Galles

Department of Computer Science
University of San Francisco
Some algorithms take exponential time
- Simple version of Fibonacci
- Faster versions of Fibonacci that take linear time

Some *Problems* take exponential time
- *All* algorithms that solve the problem take exponential time
- Towers of Hanoi
23-1: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk
23-2: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 1
23-3: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 2
23-4: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 3
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 4
23-6: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 5
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 6
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 7
23-9: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 8
23-10: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 9
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 10
23-12: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 11
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 12
23-14: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 13
23-15: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 14
23-16: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 15
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 15

- Moving n disks requires $2^n - 1$ moves
Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 15

- Moving n disks requires $2^n - 1$ moves
- Completely impractical for large values of n
Reductions

A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2

- Given an instance of Problem 1, create an instance of Problem 2
- Solve the instance of Problem 2
- Use the solution of Problem 2 to create a solution to Problem 1
• Example Problem: Pairing
 • Given two lists of integers of size \(n \)
 • Match the smallest element of each list together
 • Match the second smallest element of each list together
 • .. etc.
23-21: Reductions

<table>
<thead>
<tr>
<th>List 1</th>
<th>List 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>47</td>
<td>19</td>
</tr>
<tr>
<td>93</td>
<td>87</td>
</tr>
<tr>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>
23-22: Reductions

List 1

13 → 30
21 → 14
5 → 26
47 → 19
93 → 87
25 → 54
14 → 23
6 → 11
12

List 2

8
Reductions

- Reduction from Pairing to Sorting
 - Can we reduce the pairing problem to a sorting problem
 - That is, how can we use the sorting problem to solve the pairing problem?
Reductions

- Reduction from Pairing to Sorting
 - Lets us solve the Pairing problem by solving Sorting problem
 - Given any two lists L1 and L2 that we wish to pair:
 - Sort L1 and L2
 - Pair L1[i] with L2[i] for all i
Reductions

- Reduction from Pairing to Sorting
 - Reduction takes very little time
 - Time to solve Pairing (using this reduction) is the time to solve Sorting
 - We can solve Pairing in time $O(n \log n)$ using sorting.
• Reduction from Sorting to Pairing
 • Given an instance of Sorting, create an instance of pairing problem
 • Solve the pairing problem
 • Use the solution of pairing problem to solve the sorting problem
Given an list L_1:
- Create a new list L_2, such that $L_2[i] = i$
- Solve the paring problem, pairing L_1 and L_2
- Use counting sort to sort L_1, using the paired element from L_2 as the key
Given an list L1:

- Create a new list L2, such that L2[i] = i
- Solve the paring problem, pairing L1 and L2
- Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take?
Given an list L_1:

- Create a new list L_2, such that $L_2[i] = i$
- Solve the paring problem, pairing L_1 and L_2
- Use counting sort to sort L_1, using the paired element from L_2 as the key

How long does this take?

- $O(n + \text{time to do pairing})$
We can reduce Sorting to Pairing, such that:

- Time to do Sorting takes $O(n + \text{time to do pairing})$

Sorting takes $\Omega(n \lg n)$ time

Thus, the pairing problem must take at least $\Omega(n \lg n)$ time as well
We can use a Reduction to compare problems. If there is a reduction from problem A to problem B that can be done quickly, Problem A is known to be hard (cannot be solved quickly). Problem B cannot be solved quickly, either.
A problem is NP if a solution can be verified easily
- Given a potential solution to the problem, verify that the solution does solve the problem
- Verification takes polynomial (not exponential!) time
- (Pretty low bar for “easily”)

NP Problems
A problem is NP if a solution can be verified easily

- **Traveling Salesman Problem (TSP)**
 - Given a graph with weighted vertices, and a cost bound k
 - Is there a cycle that contains all vertices in the graph, that has a total cost less than k?

- Given any potential solution to the TSP, we can easily verify that the solution is correct
A problem is NP if a solution can be verified easily

- Graph Coloring
 - Given a graph and a number of colors k
 - Can we color every vertex using no more than k colors, such that all adjacent vertices have different colors?

- Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct.
A problem is NP if a solution can be verified easily.

Satisfiability
- Given a boolean formula over a set of boolean variables $a_1 \ldots a_n$

 $(a_1 || !a_2) && (a_2 || a_5 || !a_1) && \ldots$

- Can we give a truth value to all variables $a_1 \ldots a_n$ so that the value of the formula is true?

Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct.
NP Problems

• A problem is NP if a solution can be verified easily
 • Sorting
 • Given a list of elements L and an ordering of the elements \leq
 • Create a permutation of L such that $L[i] \leq L[i + 1]$
 • Given any potential solution to the Sorting problem, we can easily verify that the solution is correct
NP Problems

- If we can guess an answer, we can verify it quickly.
- NP stands for Non-Deterministic Polynomial
 - Non-Deterministic = we can guess
 - Polynomial = “quickly”
- NP problem: If we could guess an answer, we could verify it in polynomial (n, n^2, n^5 – not exponential) time.
Two Definitions of Non-Deterministic Machines:

- “Oracle” – allows machine to magically make a correct guess
- Massively parallel – simultaneously try to verify all possible solutions
 - Try all permutations of vertices in a graph, see if any form a cycle with cost $< k$
 - Try all colorings of a graph with up to k colors, see if any are legal
 - Try all permutations of a list, see if any are sorted
A problem is NP if a non-deterministic machine can solve it in polynomial time
 - Of course, we have no real non-deterministic machines

A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
 - Sorting is in P – can sort a list in polynomial time
 - All problems in P are also in NP
 - Ignore the oracle
An NP problem is “NP-Complete” if there is a reduction from *any* NP problem to that problem.

For example, Traveling Salesman (TSP) is NP-Complete:

- We can reduce *any* NP problem to TSP.
- If we could solve TSP in polynomial time, we could solve *all* NP problems in polynomial time.

Is TSP unique in this way?
There are many NP-Complete problems

- TSP
- Graph Coloring
- Satisfiability
- .. many, many more

If we could solve *any* of these problems quickly, we could solve *all* of them quickly

All known solutions take exponential time
If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)

- If it could, then all NP problems could be solved quickly
- Many people have tried for many years to find polynomial solutions for NP complete problems, all have failed

- However, no proof that NP-Complete problems require exponential time – open problem
If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly.

If that is the case, then $\text{NP} = \text{P}$.

- P is set of problems that can be solved by a standard machine in polynomial time.

Most everyone believes that $\text{NP} \neq \text{P}$, and all NP-Complete problems require exponential time on standard computers – not yet been proven.
Why is NP-Completeness important?

- If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it
- What can we do, if we need to solve a problem that is NP-Complete?
What can we do, if we need to solve a problem that is NP-Complete?

- If the problem we need to solve is very small (< 20), an exponential solution might be OK
- We can solve an \textit{approximation} of the problem
 - Color a graph using an non-optimal number of colors
 - Find a Traveling Salesman tour that is not optimal
Impossible Problems

- Some problems are “easy” – require a fairly small amount of time to solve
 - Sorting
- Some problems are “probably hard” – believed to require exponential time to solve
 - TSP, Graph Coloring, etc
- Some problems are “hard” – known to require an exponential amount of time to solve
 - Towers of Hanoi
- Some problems are impossible – cannot be solved
Halting Problem

- Program is running – seems to be taking a long time
- We’d like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
 - Takes as input the source code to a program p, and an input i
 - Determines if p will run forever when run on i
23-48: Halting Problem

• Program is running – seems to be taking a long time

• We’d like to know if the program will eventually finish, or if it is in an infinite loop

• Great debugging tool:
 • Takes as input the source code to a program p, and an input i
 • Determines if p will run forever when run on i

• No such tool can exist!
23-49: **Halting Problem**

- We will prove that the halting problem is unsolvable by contradiction
 - Assume that we have a solution to the halting problem
 - Derive a contradiction
 - Our original assumption (that the halting problem has a solution) must be false
boolean halt(char [] program, char [] input) {

 /* code to determine if the program
 halts when run on the input */

 if (program halts on input)
 return true;
 else
 return false;

}
boolean selfhalt(char [] program) {
 if (halt(program, program))
 return true;
 else
 return false;
}
23-52: Halting Problem

boolean selfhalt(char [] program) {
 if (halt(program, program))
 return true;
 else
 return false;
}

void contrary(char [] program) {
 if (selfhalt(program)
 while(true); /* infinite loop */
}
boolean selfhalt(char [] program) {
 if (halt(program, program))
 return true;
 else
 return false;
}

void contrary(char [] program) {
 if (selfhalt(program)
 while(true); /* infinite loop */
}

• what happens when we call contrary, passing in its own source code as input?
23-54: Reduction Example

- Hamiltonian Cycle:
 - Given an unweighted, undirected graph G, is there a cycle that includes every vertex exactly once?

- Traveling Salesman Problem (TSP)
 - Given a complete, weighed, undirected graph G and a cost bound k, is there a cycle that includes every vertex in G, with a cost $< k$?
23-55: Reduction Example

- If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time.
 - Given any graph G, we can create a new graph G' and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G' with cost less than k.
 - Vertices in G' are the same as the vertices in G.
 - For each pair of vertices x_i and x_j in G, if the edge (x_i, x_j) is in G, add the edge (x_i, x_j) to G' with the cost 1. Otherwise, add the edge (x_i, x_j) to G' with the cost 2.
 - Set the limit $k = \#$ of vertices in G.
23-56: Reduction Example

Limit = 4
If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time

- Start with an instance of Hamiltonian Cycle
- Create instance of TSP
- Feed instance of TSP into TSP solver
- Use result to find solution to Hamiltonian Cycle
Given any instance of the Hamiltonian Cycle Problem:

- We can (in polynomial time) create an instance of Satisfiability
- That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G

If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time
Given a graph G with n vertices, we will create a formula with n^2 variables:

- $x_{11}, x_{12}, x_{13}, \ldots x_{1n}$
- $x_{21}, x_{22}, x_{23}, \ldots x_{2n}$
- \ldots
- $x_{n1}, x_{n2}, x_{n3}, \ldots x_{nn}$

Design our formula such that x_{ij} will be true if and only if the ith element in a Hamiltonian Circuit of G is vertex # j.
For our set of n^2 variables x_{ij}, we need to write a formula that ensures that:

- For each i, there is exactly one j such that $x_{ij} = \text{true}$
- For each j, there is exactly one i such that $x_{ij} = \text{true}$
- If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_j to v_k in the graph G
For each i, there is exactly one j such that $x_{ij} = \text{true}$

- For each i in $1 \ldots n$, add the rules:
 - $\left(x_{i1} \mid \mid x_{i2} \mid \mid \ldots \mid \mid x_{in} \right)$

This ensures that for each i, there is at least one j such that $x_{ij} = \text{true}$

(This adds n clauses to the formula)
For each i, there is exactly one j such that $x_{ij} = \text{true}$ for each i in $1 \ldots n$
for each j in $1 \ldots n$
for each k in $1 \ldots n$ $j \neq k$
Add rule $(\neg x_{ij} || \neg x_{ik})$

This ensures that for each i, there is at most one j such that $x_{ij} = \text{true}$

(this adds a total of n^3 clauses to the formula)
Reduction Example #2

- If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_i to v_k in the graph G

 for each i in $1 \ldots (n - 1)$
 for each j in $1 \ldots n$
 for each k in $1 \ldots n$
 if edge (v_j, v_k) is not in the graph:
 Add rule $(!x_{ij} \lor !x_{(i+1)k})$

- (This adds no more than n^3 clauses to the formula)
If x_{nj} and x_{0k} are both true, then there must be a link from v_i to v_k in the graph G (looping back to finish cycle)

for each j in $1 \ldots n$
for each k in $1 \ldots n$
if edge (v_n, v_0) is not in the graph:
Add rule $(!x_{nj} \| !x_{0k})$

(This adds no more than n^2 clauses to the formula)
In order for this formula to be satisfied:

- For each i, there is exactly one j such that x_{ij} is true
- For each j, there is exactly one i such that x_{ji} is true
- If x_{ij} is true, and $x_{(i+1)k}$ is true, then there is an arc from v_j to v_k in the graph G

Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph
• Exact Cover Problem
 • Set of elements A
 • $F \subseteq 2^A$, family of subsets
 • Is there a subset of F such that each element of A appears exactly once?
• Exact Cover Problem
 • \(A = \{a, b, c, d, e, f, g\} \)
 • \(F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\} \)
 • Exact cover exists:
 \(\{a, b, c\}, \{d, e, f\}, \{g\} \)
• **Exact Cover Problem**

 - $A = \{a, b, c, d, e, f, g\}$
 - $F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\}$
 - No exact cover exists
Exact Cover is \(\mathbf{NP} \)-Complete

- Reduction from Satisfiability
- Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover
- Solution to Exact Cover problem tells us solution to Satisfiability problem
- Satisfiability is \(\mathbf{NP} \)-Complete \(\implies \) Exact Cover is \(\mathbf{NP} \)-Complete
Given an instance of SAT:

- \(C_1 = (x_1 \lor \overline{x_2}) \)
- \(C_2 = (\overline{x_1} \lor x_2 \lor x_3) \)
- \(C_3 = (x_2) \)
- \(C_4 = (\overline{x_2} \lor \overline{x_3}) \)

Formula: \(C_1 \land C_2 \land C_3 \land C_4 \)

Create an instance of Exact Cover

- Define a set \(A \) and family of subsets \(F \) such that there is an exact cover of \(A \) in \(F \) if and only if the formula is satisfiable
23-71: Exact Cover is NP-Complete

\[C_1 = (x_1 \lor \overline{x_2}) \quad C_2 = (\overline{x_1} \lor x_2 \lor x_3) \quad C_3 = (x_2) \quad C_4 = (\overline{x_2} \lor \overline{x_3}) \]

\[A = \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\} \]

\[F = \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}\} \]

\[X_1, f = \{x_1, p_{11}\} \]

\[X_1, t = \{x_1, p_{21}\} \]

\[X_2, f = \{x_2, p_{22}, p_{31}\} \]

\[X_2, t = \{x_2, p_{12}, p_{41}\} \]

\[X_3, f = \{x_3, p_{23}\} \]

\[X_3, t = \{x_3, p_{42}\} \]

\[\{C_1, p_{11}\}, \quad \{C_1, p_{12}\}, \quad \{C_2, p_{21}\}, \quad \{C_2, p_{22}\}, \quad \{C_2, p_{23}\}, \quad \{C_3, p_{31}\}, \]

\[\{C_4, p_{41}\}, \quad \{C_4, p_{42}\} \} \]
Directed Hamiltonian Cycle

- Given any directed graph G, determine if G has a Hamiltonian Cycle
- Cycle that includes every node in the graph exactly once, following the direction of the arrows
Given any directed graph G, determine if G has a Hamiltonian Cycle.

Cycle that includes every node in the graph exactly once, following the direction of the arrows.
The Directed Hamiltonian Cycle problem is \textit{NP}-Complete

Reduce Exact Cover to Directed Hamiltonian Cycle

Given any set A, and family of subsets F:

Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F
• Widgets:
 • Consider the following graph segment:

 ![Graph Diagram]

 • If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ — but not both (why)?
• Widgets:
 • XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)

$A = \{a_0, a_1, a_2, a_3\}$

$F_1 = \{a_1, a_2\}$
$F_2 = \{a_3\}$
$F_3 = \{a_2, a_3\}$
Directed Hamiltonian Cycle

- Add a vertex for every subset F (+ 1 extra)

$F_0 = \{ a_3 \}$
$F_1 = \{ a_1, a_2 \}$
$F_2 = \{ a_3 \}$
$F_3 = \{ a_2, a_3 \}$
Directed Hamiltonian Cycle

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

\[
\begin{align*}
F_0 &= \{ a_1, a_2 \} \\
F_1 &= \{ a_3 \} \\
F_2 &= \{ a_2, a_3 \}
\end{align*}
\]
Directed Hamiltonian Cycle

- Add 2 edges from F_i to F_{i+1}. One edge will be a “short edge”, and one will be a “long edge”.

$F_1 = \{ a_1, a_2 \}$
$F_2 = \{ a_3 \}$
$F_3 = \{ a_2, a_3 \}$
Directed Hamiltonian Cycle

- Add an edge from \(a_{i-1} \) to \(a_i \) for each subset \(a_i \) appears in.

\[
\begin{align*}
F &= \{a_1, a_2\} \\
F_1 &= \{a_3\} \\
F_2 &= \{a_2, a_3\}
\end{align*}
\]
Directed Hamiltonian Cycle

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.

\[
F = \{ a_1, a_2 \}
\]

\[
F_1 = \{ a_1, a_2 \}
\]

\[
F_2 = \{ a_3 \}
\]

\[
F_3 = \{ a_3, a_2, a_3 \}
\]

XOR edge
Directed Hamiltonian Cycle

\[F = \{ a_1, a_2 \} \]
\[F_2 = \{ a_3 \} \]
\[F_3 = \{ a_2, a_3 \} \]

XOR edge
23-85: Directed Hamiltonian Cycle

- **F₀**: A directed graph with vertices labeled a₀ to a₄.
- **F₁**: Set of vertices {a₂, a₄}.
- **F₂**: Set of vertices {a₂, a₄}.
- **F₃**: Set of vertices {a₁, a₃}.
- **F₄**: Set of vertices {a₂}.

The graph shows a Hamiltonian cycle where each vertex is connected to the next in a sequence, and there are XOR edges indicated by circles on the diagram.