23-0: **Hard Problems**

- Some algorithms take exponential time
 - Simple version of Fibonacci
 - Faster versions of Fibonacci that take linear time
- Some *Problems* take exponential time
 - *All* algorithms that solve the problem take exponential time
 - Towers of Hanoi

23-1: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

23-2: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 1

23-3: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk
Moves = 2
23-4: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 3
23-5: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 4
23-6: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 5
23-7: Towers of Hanoi

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 6

23-8: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 7

23-9: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 8

23-10: **Towers of Hanoi**

- Move one disk at a time
- Never place a larger disk on a smaller disk

Moves = 9

23-11: **Towers of Hanoi**

- Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 10
23-12: **Towers of Hanoi**

• Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 11
23-13: **Towers of Hanoi**

• Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 12
23-14: **Towers of Hanoi**

• Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 13
23-15: **Towers of Hanoi**
• Never place a larger disk on a smaller disk

Moves = 14
23-16: **Towers of Hanoi**

• Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 15
23-17: **Towers of Hanoi**

• Move one disk at a time
• Never place a larger disk on a smaller disk

Moves = 15
23-18: **Towers of Hanoi**

• Moving n disks requires $2^n - 1$ moves

23-19: **Reductions**

• A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2
• Given an instance of Problem 1, create an instance of Problem 2
• Solve the instance of Problem 2
• Use the solution of Problem 2 to create a solution to Problem 1

23-20: Reductions

• Example Problem: Pairing
 • Given two lists of integers of size n
 • Match the smallest element of each list together
 • Match the second smallest element of each list together
 • ... etc.

23-21: Reductions

<table>
<thead>
<tr>
<th>List 1</th>
<th>List 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>47</td>
<td>19</td>
</tr>
<tr>
<td>93</td>
<td>87</td>
</tr>
<tr>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

23-22: Reductions

23-23: Reductions

• Reduction from Pairing to Sorting
 • Can we reduce the pairing problem to a sorting problem
 • That is, how can we use the sorting problem to solve the pairing problem?

23-24: Reductions

• Reduction from Pairing to Sorting
 • Lets us solve the Pairing problem by solving Sorting problem
• Given any two lists L1 and L2 that we wish to pair:
 • Sort L1 and L2
 • Pair L1[i] with L2[i] for all i

23-25: Reductions

• Reduction from Pairing to Sorting
 • Reduction takes very little time
 • Time to solve Pairing (using this reduction) is the time to solve Sorting
 • We can solve Pairing in time $O(n \lg n)$ using sorting.

23-26: Reductions

• Reduction from Sorting to Pairing
 • Given an instance of Sorting, create an instance of pairing problem
 • Solve the paring problem
 • Use the solution of pairing problem to solve the sorting problem

23-27: Reductions

• Given an list L1:
 • Create a new list L2, such that L2[i] = i
 • Solve the paring problem, pairing L1 and L2
 • Use counting sort to sort L1, using the paired element from L2 as the key

23-28: Reductions

• Given an list L1:
 • Create a new list L2, such that L2[i] = i
 • Solve the paring problem, pairing L1 and L2
 • Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take? 23-29: Reductions

• Given an list L1:
 • Create a new list L2, such that L2[i] = i
 • Solve the paring problem, pairing L1 and L2
 • Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take?

• $O(n + \text{time to do pairing})$

23-30: Reductions

• We can reduce Sorting to Pairing, such that:
• Time to do Sorting takes $O(n + \text{time to do pairing})$
• Sorting takes $\Omega(n \lg n)$ time
• Thus, the pairing problem must take at least $\Omega(n \lg n)$ time as well

23-31: Reductions

• We can use a Reduction to compare problems
• If there is a reduction from problem A to problem B that can be done quickly
• Problem A is known to be hard (cannot be solved quickly)
• Problem B cannot be solved quickly, either

23-32: NP Problems

• A problem is NP if a solution can be verified easily
 • Given a potential solution to the problem, verify that the solution does solve the problem
 • Verification takes polynomial (not exponential!) time
 • (Pretty low bar for "easily")

23-33: NP Problems

• A problem is NP if a solution can be verified easily
 • Traveling Salesman Problem (TSP)
 • Given a graph with weighted vertices, and a cost bound k
 • Is there a cycle that contains all vertices in the graph, that has a total cost less than k?
 • Given any potential solution to the TSP, we can easily verify that the solution is correct

23-34: NP Problems

• A problem is NP if a solution can be verified easily
 • Graph Coloring
 • Given a graph and a number of colors k
 • Can we color every vertex using no more than k colors, such that all adjacent vertices have different colors?
 • Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct

23-35: NP Problems

• A problem is NP if a solution can be verified easily
 • Satisfiability
 • Given a boolean formula over a set of boolean variables $a_1 \ldots a_n$
 $(a_1 || a_2) \& \& (a_2 || a_5) || a_1) \& \& \ldots$
 • Can we give a truth value to all variables $a_1 \ldots a_n$ so that the value of the formula is true?
 • Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct
23-36: **NP Problems**

- A problem is NP if a solution can be verified easily
 - Sorting
 - Given a list of elements L and an ordering of the elements \leq
 - Create a permutation of L such that $L[i] \leq L[i + 1]$
 - Given any potential solution to the Sorting problem, we can easily verify that the solution is correct

23-37: **NP Problems**

- If we can guess an answer, we can verify it quickly
- NP stands for Non-Deterministic Polynomial
 - Non-Deterministic = we can guess
 - Polynomial = “quickly”
- NP problem: If we could guess an answer, we could verify it in polynomial (n, n^2, n^5 – not exponential) time

23-38: **Non-Deterministic Machine**

- Two Definitions of Non-Deterministic Machines:
 - “Oracle” – allows machine to magically make a correct guess
 - Massively parallel – simultaneously try to verify all possible solutions
 - Try all permutations of vertices in a graph, see if any form a cycle with cost $\leq k$
 - Try all colorings of a graph with up to k colors, see if any are legal
 - Try all permutations of a list, see if any are sorted

23-39: **NP vs. P**

- A problem is NP if a non-deterministic machine can solve it in polynomial time
 - Of course, we have no real non-deterministic machines
- A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
 - Sorting is in P – can sort a list in polynomial time
 - All problems in P are also in NP
 - Ignore the oracle

23-40: **NP-Complete**

- An NP problem is “NP-Complete” if there is a reduction from *any* NP problem to that problem
- For example, Traveling Salesman (TSP) is NP-Complete
 - We can reduce *any* NP problem to TSP
 - If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time
- Is TSP unique in this way?
NP-Complete

- There are many NP-Complete problems
 - TSP
 - Graph Coloring
 - Satisfiability
 - ... many, many more
- If we could solve any of these problems quickly, we could solve all of them quickly
- All known solutions take exponential time

NP-Complete

- If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)
 - If it could, then all NP problems could be solved quickly
 - Many people have tried for many years to find polynomial solutions for NP complete problems, all have failed
- However, no proof that NP-Complete problems require exponential time – open problem

NP =? P

- If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly
- If that is the case, then NP=P
 - P is set of problems that can be solved by a standard machine in polynomial time
- Most everyone believes that NP ≠ P, and all NP-Complete problems require exponential time on standard computers – not yet been proven

NP-Completeness

- Why is NP-Completeness important?
 - If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it
 - What can we do, if we need to solve a problem that is NP-Complete?

NP-Completeness

- What can we do, if we need to solve a problem that is NP-Complete?
 - If the problem we need to solve is very small (< 20), an exponential solution might be OK
 - We can solve an approximation of the problem
 - Color a graph using an non-optimal number of colors
 - Find a Traveling Salesman tour that is not optimal

Impossible Problems

- Some problems are “easy” – require a fairly small amount of time to solve
• Sorting
• Some problems are “probably hard” – believed to require exponential time to solve
 • TSP, Graph Coloring, etc
• Some problems are “hard” – known to require an exponential amount of time to solve
 • Towers of Hanoi
• Some problems are impossible – cannot be solved

23-47: Halting Problem
• Program is running – seems to be taking a long time
• We’d like to know if the program will eventually finish, or if it is in an infinite loop
• Great debugging tool:
 • Takes as input the source code to a program \(p \), and an input \(i \)
 • Determines if \(p \) will run forever when run on \(i \)

23-48: Halting Problem
• Program is running – seems to be taking a long time
• We’d like to know if the program will eventually finish, or if it is in an infinite loop
• Great debugging tool:
 • Takes as input the source code to a program \(p \), and an input \(i \)
 • Determines if \(p \) will run forever when run on \(i \)
• No such tool can exist!

23-49: Halting Problem
• We will prove that the halting problem is unsolvable by contradiction
 • Assume that we have a solution to the halting problem
 • Derive a contradiction
 • Our original assumption (that the halting problem has a solution) must be false

23-50: Halting Problem

```java
boolean halt(char [] program, char [] input) {
    /* code to determine if the program halts when run on the input */
    if (program halts on input)
        return true;
    else
        return false;
}
```
23-51: Halting Problem

```java
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
```

23-52: Halting Problem

```java
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
```

```java
void contrary(char [] program) {
    if (selfhalt(program)
        while(true); /* infinite loop */
}
```

23-53: Halting Problem

```java
boolean selfhalt(char [] program) {
    if (halt(program, program))
        return true;
    else
        return false;
}
```

```java
void contrary(char [] program) {
    if (selfhalt(program)
        while(true); /* infinite loop */
}
```

- what happens when we call contrary, passing in its own source code as input?

23-54: Reduction Example

- Hamiltonian Cycle:
 - Given an unweighted, undirected graph \(G \), is there a cycle that includes every vertex exactly once?

- Traveling Salesman Problem (TSP)
 - Given a complete, weighed, undirected graph \(G \) and a cost bound \(k \), is there a cycle that includes every vertex in \(G \), with a cost < \(k \)?

23-55: Reduction Example

- If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time
• Given any graph G, we can create a new graph G' and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G' with cost less than k

• Vertices in G' are the same as the vertices in G

• For each pair of vertices x_i and x_j in G, if the edge (x_i, x_j) is in G, add the edge (x_i, x_j) to G' with the cost 1. Otherwise, add the edge (x_i, x_j) to G' with the cost 2.
• Set the limit $k = \#$ of vertices in G

23-56: **Reduction Example**

![Diagram](image)

| Limit = 4 |

23-57: **Reduction Example**

• If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time

• Start with an instance of Hamiltonian Cycle

• Create instance of TSP

• Feed instance of TSP into TSP solver

• Use result to find solution to Hamiltonian Cycle

23-58: **Reduction Example #2**

• Given any instance of the Hamiltonian Cycle Problem:

• We can (in polynomial time) create an instance of Satisfiability

• That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G

• If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

23-59: **Reduction Example #2**

• Given a graph G with n vertices, we will create a formula with n^2 variables:

 $x_{11}, x_{12}, x_{13}, \ldots, x_{1n}$
 $x_{21}, x_{22}, x_{23}, \ldots, x_{2n}$
 \[\ldots \]
 $x_{n1}, x_{n2}, x_{n3}, \ldots, x_{nn}$

• Design our formula such that x_{ij} will be true if and only if the ith element in a Hamiltonian Circuit of G is vertex # j

23-60: **Reduction Example #2**
For our set of \(n^2 \) variables \(x_{ij} \), we need to write a formula that ensures that:

- For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)
- For each \(j \), there is exactly one \(i \) such that \(x_{ij} = true \)
- If \(x_{ij} \) and \(x_{i(j+1)} \) are both true, then there must be a link from \(v_j \) to \(v_k \) in the graph \(G \)

Reduction Example #2

- For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)
 - For each \(i \) in \(1 \ldots n \), add the rules:
 - \((x_{i1}||x_{i2}||\ldots||x_{in})\)
 - This ensures that for each \(i \), there is at least one \(j \) such that \(x_{ij} = true \)
 - (This adds \(n \) clauses to the formula)

Reduction Example #2

- For each \(i \), there is exactly one \(j \) such that \(x_{ij} = true \)
 - For each \(i \) in \(1 \ldots n \)
 - For each \(j \) in \(1 \ldots n \)
 - For each \(k \) in \(1 \ldots n \) \(j \neq k \)
 - Add rule \((!x_{ij}||!x_{ik})\)
 - This ensures that for each \(i \), there is at most one \(j \) such that \(x_{ij} = true \)
 - (This adds a total of \(n^3 \) clauses to the formula)

Reduction Example #2

- If \(x_{ij} \) and \(x_{i(j+1)} \) are both true, then there must be a link from \(v_j \) to \(v_k \) in the graph \(G \)
 - For each \(i \) in \(1 \ldots (n - 1) \)
 - For each \(j \) in \(1 \ldots n \)
 - For each \(k \) in \(1 \ldots n \)
 - If edge \((v_j, v_k)\) is not in the graph:
 - Add rule \((!x_{ij}||!x_{i(j+1)k})\)
 - (This adds no more than \(n^3 \) clauses to the formula)

Reduction Example #2

- If \(x_{nj} \) and \(x_{0k} \) are both true, then there must be a link from \(v_i \) to \(v_k \) in the graph \(G \) (looping back to finish cycle)
 - For each \(j \) in \(1 \ldots n \)
 - For each \(k \) in \(1 \ldots n \)
 - If edge \((v_n, v_0)\) is not in the graph:
 - Add rule \((!x_{nj}||!x_{0k})\)
(This adds no more than \(n^2 \) clauses to the formula)

23-65: Reduction Example #2

In order for this formula to be satisfied:

- For each \(i \), there is exactly one \(j \) such that \(x_{ij} \) is true
- For each \(j \), there is exactly one \(i \) such that \(x_{ji} \) is true
- if \(x_{ij} \) is true, and \(x_{(i+1)k} \) is true, then there is an arc from \(v_j \) to \(v_k \) in the graph \(G \)

Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

- Exact Cover Problem
 - Set of elements \(A \)
 - \(F \subset 2^A \), family of subsets
 - Is there a subset of \(F \) such that each element of \(A \) appears exactly once?

23-67: More NP-Complete Problems

- Exact Cover Problem
 - \(A = \{a, b, c, d, e, f, g\} \)
 - \(F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\} \)
 - Exact cover exists:
 \(\{a, b, c\}, \{d, e, f\}, \{g\} \)

23-68: More NP-Complete Problems

- Exact Cover Problem
 - \(A = \{a, b, c, d, e, f, g\} \)
 - \(F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\} \)
 - No exact cover exists

23-69: More NP-Complete Problems

- Exact Cover is NP-Complete
 - Reduction from Satisfiability
 - Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover
 - Solution to Exact Cover problem tells us solution to Satisfiability problem
 - Satisfiability is NP-Complete \(\equiv \) Exact Cover is NP-Complete

23-70: Exact Cover is NP-Complete

- Given an instance of SAT:
 - \(C_1 = (x_1 \lor \overline{x_2}) \)
 - \(C_2 = (\overline{x_1} \lor x_2 \lor x_3) \)
• $C_3 = (x_2)$
• $C_4 = (x_2 \lor \overline{x_3})$

• Formula: $C_1 \land C_2 \land C_3 \land C_4$

• Create an instance of Exact Cover
 • Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula is satisfiable

23-71: Exact Cover is NP-Complete

$C_1 = (x_1 \lor \overline{x_2})$ $C_2 = (\overline{x_1} \lor x_2 \lor x_3)$ $C_3 = (x_2)$ $C_4 = (\overline{x_2} \lor \overline{x_3})$

$A = \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\}$

$F = \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}\}$

$X_1, f = \{x_1, p_{11}\}$

$X_1, t = \{x_1, p_{21}\}$

$X_2, f = \{x_2, p_{22}, p_{31}\}$

$X_2, t = \{x_2, p_{12}, p_{41}\}$

$X_3, f = \{x_3, p_{23}\}$

$X_3, t = \{x_3, p_{42}\}$

$\{C_1, p_{11}\}, \{C_1, p_{12}\}, \{C_2, p_{21}\}, \{C_2, p_{22}\}, \{C_2, p_{23}\}, \{C_3, p_{31}\}, \{C_4, p_{41}\}, \{C_4, p_{42}\}\}$

23-72: Directed Hamiltonian Cycle

• Given any directed graph G, determine if G has a Hamiltonian Cycle
 • Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-73: Directed Hamiltonian Cycle

• Given any directed graph G, determine if G has a Hamiltonian Cycle
 • Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-74: Directed Hamiltonian Cycle

• The Directed Hamiltonian Cycle problem is NP-Complete

• Reduce Exact Cover to Directed Hamiltonian Cycle
 • Given any set A and family of subsets F:
 • Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F
23-75: Directed Hamiltonian Cycle

- Widgets:
 - Consider the following graph segment:

![Graph Segment](image1)

- If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ – but not both (why)?

23-76: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

![XOR Edges](image2)

23-77: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

![XOR Edges](image3)

23-78: Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)
23-79: Directed Hamiltonian Cycle

- Add a vertex for every subset F (+ 1 extra)

23-80: Directed Hamiltonian Cycle

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable
23.81: Directed Hamiltonian Cycle

- Add 2 edges from F_i to F_{i+1}. One edge will be a “short edge”, and one will be a “long edge”.

23.82: Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_i for each subset a_i appears in.
23-83: Directed Hamiltonian Cycle

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.

23-84: Directed Hamiltonian Cycle

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.

23-85: Directed Hamiltonian Cycle
\[\begin{align*}
F_1 &= \{a_2, a_4\} \\
F_2 &= \{a_3, a_4\} \\
F_3 &= \{a_1, a_3\} \\
F_4 &= \{a_2\}
\end{align*} \]

XOR edge