Data Structures and Algorithms

CS245-2016S-04

Stacks and Queues

David Galles

Department of Computer Science
University of San Francisco
04-0: Abstract Data Types

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an *interface*
- Data in an ADT cannot be manipulated directly – only through operations defined in the interface
04-1: Abstract Data Types

- To define an ADT, give the operations that can be performed on it
- The ADT says nothing about how the operations are performed
- Could have different implementations of the same ADT
- First ADT for this class: Stack
04-2: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

- Add an element to the top of the stack
- Remove the top element
- Check if the stack is empty
Array:
Array:

- Stack elements are stored in an array
- Top of the stack is the *end* of the array
 - If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: \(\text{data}[\text{top}++] = \text{elem} \)
- Pop: \(\text{elem} = \text{data}[--\text{top}] \)
04-5: Stack Implementation

• See code & Visualization
For Stack Operations

Array Implementation:
push
pop
empty()
Array Implementation:

- **push**: $\Theta(1)$
- **pop**: $\Theta(1)$
- **empty()**: $\Theta(1)$
Linked List:
Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the *front* of the linked list
- push: `top = new Link(elem, top)`
- pop: `elem = top.element(); top = top.next()`
04-10: Stack Implementation

• See code & Visualization
Linked List Implementation:
- push
- pop
- empty()
For Stack Operations

Linked List Implementation:

push $\Theta(1)$
pop $\Theta(1)$
empty() $\Theta(1)$
A Queue is a First-In, First-Out (FIFO) data structure.

Queue Operations:

• Add an element to the end (tail) of the Queue
• Remove an element from the front (head) of the Queue
• Check if the Queue is empty
04-14: Queue Implementation

Linked List:
Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
 - Enqueue: \(\text{tail.setNext(new link(elem,null))}; \)
 \(\text{tail = tail.next()}; \)
 - Dequeue: \(\text{elem = head.element();} \)
 \(\text{head = head.next();} \)
Queue Implementation

- See code & visualization
Queue Implementation

Array:
Queue Implementation

Array:

- Store queue elements in a circular array
- Maintain the index of the first element (head) and the next location to be inserted (tail)

 Enqueue:
  ```
  data[tail] = elem;  
  tail = (tail + 1) % size
  ```

- Dequeue:
  ```
  elem = data[head];  
  head = (head + 1) % size
  ```
04-19: Queue Implementation

- See code & visualization
“Minimum Stacks” have one additional operation:

- minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?
“Minimum Stacks” have one additional operation:

- minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?

Can you implement a $\Theta(1)$ minimum?

push, pop must remain $\Theta(1)$ as well!
We’d like our array-based queues and our linked list-based queues to behave in the same way.

How do they behave differently, given the implementation we’ve seen so far?
04-23: Modifying Queues

- We’d like our array-based queues and our linked list-based queues to behave in the same way.
- How do they behave differently, given the implementation we’ve seen so far?
 - Array-based queues can get full
 - How can we fix this?
• Growing queues
 • If we do a Enqueue on a full queue, we can:
 • Create a new array, that is twice as big as the old array
 • Copy all of the data across to the new array
 • Replace the old array with a new array
 • Why is this a little tricky?
• Growing queues
 • If we do a Enqueue on a full queue, we can:
 • Create a new array, that is twice as big as the old array
 • Copy all of the data across to the new array
 • Replace the old array with a new array
 • Why is this a little tricky?
 • Queue could wrap around the end of the array (examples!)
Growing stacks/queues

Why do we double the size of the queue when it gets full, instead of just increasing the size by a constant amount

Hint – think about running times
• Growing stacks/queues
 • What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)
 • What is the running time for n enqueues/pushes?
Growing stacks/queues

What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)

- $O(n)$, for a stack size of n

What is the running time for n enqueues/pushes?

- $O(n)$ – so each push/enqueue takes $O(1)$ on average
Growing stacks/queues

- What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements when the stack/queue is full)

- What is the running time for n enqueues/pushes?
Growing stacks/queues

- What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements when the stack/queue is full)
 - $O(n)$, for a sack size of n

- What is the running time for n enqueues/pushes?
 - $O(n \times n/k) = O(n^2)$, if k is a constant
 - Each enqueue/dequeue takes time $O(n)$ on average!
Figuring out how long an algorithm takes to run on average, by adding up how long a sequence of operations takes, is called *Amortized Analysis*.

Washing Machine example
- Cost of a washing machine
- Amortized cost per wash

We’ll take quite a bit about amortized analysis, complete with some more formal mathematics, later in the semester.