04-0: **Abstract Data Types**

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an *interface*.
- Data in an ADT cannot be manipulated directly – only through operations defined in the interface.

04-1: **Abstract Data Types**

- To define an ADT, give the operations that can be performed on it.
- The ADT says nothing about how the operations are performed.
- Could have different implementations of the same ADT.
- First ADT for this class: Stack.

04-2: **Stack**

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

- Add an element to the top of the stack.
- Remove the top element.
- Check if the stack is empty.

04-3: **Stack Implementation**

Array:

04-4: **Stack Implementation**

Array:

- Stack elements are stored in an array.
- Top of the stack is the *end* of the array.
 - If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array.
- Push: `data[top++] = elem`
- Pop: `elem = data[--top]`

04-5: **Stack Implementation**

- See code & Visualization.

04-6: **Θ() For Stack Operations**

Array Implementation:

```plaintext
push  
pop  
empty()
```

04-7: **Θ() For Stack Operations**

Array Implementation:
push $\Theta(1)$
pop $\Theta(1)$
empty() $\Theta(1)$

04-8: **Stack Implementation**

Linked List:

04-9: **Stack Implementation**

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the *front* of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()

04-10: **Stack Implementation**

- See code & Visualization

04-11: $\Theta()$ **For Stack Operations**

Linked List Implementation:

push
pop
empty()

04-12: $\Theta()$ **For Stack Operations**

Linked List Implementation:

push $\Theta(1)$
pop $\Theta(1)$
empty() $\Theta(1)$

04-13: **Queue**

A Queue is a First-In, First-Out (FIFO) data structure.

Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty

04-14: **Queue Implementation**

Linked List:

04-15: **Queue Implementation**

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
 - Enqueue: tail.setNext(new link(elem, null));
 tail = tail.next();
 - Dequeue: elem = head.element();
 head = head.next();
Queue Implementation

04-16: Queue Implementation

• See code & visualization

04-17: Queue Implementation

Array:

04-18: Queue Implementation

Array:

• Store queue elements in a circular array
• Maintain the index of the first element (head) and the next location to be inserted (tail)
• Enqueue: data[tail] = elem;
 tail = (tail + 1) % size
• Dequeue: elem = data[head];
 head = (head + 1) % size

04-19: Queue Implementation

• See code & visualization

04-20: Modifying Stacks

“Minimum Stacks” have one additional operation:

• minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?

04-21: Modifying Stacks

“Minimum Stacks” have one additional operation:

• minimum: return the minimum value stored in the stack

Can you implement a $O(n)$ minimum?

Can you implement a $\Theta(1)$ minimum?

push, pop must remain $\Theta(1)$ as well!

04-22: Modifying Queues

• We’d like our array-based queues and our linked list-based queues to behave in the same way
• How do they behave differently, given the implementation we’ve seen so far?

04-23: Modifying Queues

• We’d like our array-based queues and our linked list-based queues to behave in the same way
• How do they behave differently, given the implementation we’ve seen so far?
 • Array-based queues can get full
 • How can we fix this?

04-24: Modifying Queues

• Growing queues
• If we do a Enqueue on a full queue, we can:
 • Create a new array, that is twice as big as the old array
 • Copy all of the data across to the new array
 • Replace the old array with a new array
 • Why is this a little tricky?

04-25: Modifying Queues

• Growing queues
 • If we do a Enqueue on a full queue, we can:
 • Create a new array, that is twice as big as the old array
 • Copy all of the data across to the new array
 • Replace the old array with a new array
 • Why is this a little tricky?
 • Queue could wrap around the end of the array (examples!)

04-26: Modifying Queues

• Growing stacks/queues
 • Why do we double the size of the queue when it gets full, instead of just increasing the size by a constant amount
 • Hint – think about running times

04-27: Modifying Queues

• Growing stacks/queues
 • What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)
 • What is the running time for \(n \) enqueues/pushes?

04-28: Modifying Queues

• Growing stacks/queues
 • What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size of the stack/queue when it is full)
 • \(O(n) \), for a stack size of \(n \)
 • What is the running time for \(n \) enqueues/pushes?
 • \(O(n) \) – so each push/enqueue takes \(O(1) \) on average

04-29: Modifying Queues

• Growing stacks/queues
 • What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding \(k \) elements when the stack/queue is full)
 • What is the running time for \(n \) enqueues/pushes?
04-30: **Modifying Queues**

- Growing stacks/queues
 - What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding \(k \) elements when the stack/queue is full)
 - \(O(n) \), for a sack size of \(n \)
 - What is the running time for \(n \) enqueues/pushes?
 - \(O(n \times n/k) = O(n^2) \), if \(k \) is a constant
 - Each enqueue/dequeue takes time \(O(n) \) on average!

04-31: **Amortized Analysis**

- Figuring out how long an algorithm takes to run on average, by adding up how long a sequence of operations takes, is called *Amortized Analysis*

- Washing Machine example
 - Cost of a washing machine
 - Amortized cost per wash

- We’ll take quite a bit about amortized analysis, complete with some more formal mathematics, later in the semester.