
Data Structures and Algorithms
CS245-2016S-05

Abstract Data Types and Lists

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


05-0: Abstract Data Types

Recall that an Abstract Data Type is a definition of
a type based on the operations that can be
performed on it.

An ADT is an interface

Data in an ADT cannot be manipulated directly –
only through operations defined in the interface



05-1: List ADT

A List is an ordered collection of elements

Each element in the list has a position

Element 0, Element 1, Element 2, . . .

We can access elements in the list through an
iterator



05-2: List ADT Operations

Create an empty list

Add (append) an element to the end of the list

Add (insert) an element at a spectified index

Get the size (length) of the list

Remove an element at a specific index

Remove the first occurence of an element

Get an element at a specific index

Get an iterator to traverse the list



05-3: Iterators

Think of an iterator as a “smart bookmark” that is
associated with a specific data structure

Often used to examine every element in a data
structure



05-4: Iterators

Some operation on iterators:

Retrieve the current element

Move the iterator forward, to the next element in
the data structure

C++ has two different operations: “Get current”
and “Move forward”

Java has a single operation: “Get current and
move forward”

Move the iterator backwards, to the previous
element in the data structure

Not all iteratrs can go backwards

Java also combines going backwards as “Get
previous element and move iterator backwards”



05-5: Iterators

Some operation on iterators:

Delete element at current location (not always
allowed)

Insert an element at the current location (not
always allowed)

Operations specific to the particular data structure



05-6: List Iterator (first pass)

Get the next element (moving the iterator one
forwad)

Check if their is a next element

Remove the object at the current position (current
position == last element that was returned from a
“next”)

Insert an element at the current position (right
before the “next” element)



05-7: Java Interfaces

A Java interface is a set of methods.

Any class that implements an interface must
implement all of these methods



05-8: Java List Interface

public interface List
{

public void clear();
public void add(Object o);
public void add(int index, Object o);
public void remove(int index);
public void remove(Object o);
public int size();
public Object get(int index);
public ListIterator listIterator();
public ListIterator listIterator(int index);

}



05-9: Java List Iterator Interface

public interface ListIterator
{

public void add(Object o);
public boolean hasNext();
public Object next();
public void remove();
public void set(Object o);

}



05-10: Using Iterators

Print out a list L:

List L;
...
ListIterator it = L.listIterator();

while (it.hasNext())
{

System.out.println(it.next());
}



05-11: Array Implementation

Data is stored in an array

Iterator stores index of next location

To add an element to the current position:

Shift all elements with index >= current one to
right

To remove and element from the middle of the
array:

Shift all elements with index >= current to the
right

List has a maximum size (unless we use growable
arrays)



05-12: Array Implementation

Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) next

add(insert) hasNext

remove add

listIterator() remove

listIterator(n) set

size

get



05-13: Array Implementation

Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) Θ(1) next Θ(1)

add(insert) Θ(n) hasNext Θ(1)

remove Θ(n) add Θ(n)

listIterator() Θ(1) remove Θ(n)

listIterator(n) Θ(1) set Θ(1)

size Θ(1)

get Θ(1)



05-14: Linked-List Implementation

Data is stored in a linked list

Maintain a pointer to first element in list

Iterator maintains a pointer to the next element

To find the ith element:

Start at the front of the list

Skip past i elements

How do we insert an element before the next element?

How do we remove the “current” element?



05-15: Linked-List Implementation

Data is stored in a linked list

Maintain a pointer to first element in list

Iterator maintains a pointer to the element before

the next element (“current” element) and a pointer
to the element before the current element.

To find the ith element:

Start at the front of the list

Skip past i elements

What should “current” pointer be when the “next” ele-

ment is the first element in the list?



05-16: Linked-List Implementation

Data is stored in a linked list – with a dummy first
element

Maintain a pointer to first (dummy) element in list

Iterator maintains a pointer to the element before

the next element (“current” element) and the
“previous” element (what should “previous” be
when the first element of the list is the next
element in the list?)

To find the ith element:

Start at the front of the list

Skip past (i+1) elements



05-17: Linked-List Implementation

Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) next

add(insert) hasNext

remove add

listIterator() remove

listIterator(n) set

size

get



05-18: Linked-List Implementation

Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) Θ(1) next Θ(1)

add(insert) Θ(n) hasNext Θ(1)

remove Θ(n) add Θ(1)

listIterator() Θ(1) remove Θ(1)

listIterator(n) Θ(n) set Θ(1)

size Θ(1)

get Θ(n)



05-19: Adding Previous

Add a new operation to the iterator: previous

Move the iterator back one element, return the
previous elememt

next() followed by previous(), both return same
element

How would we implement previous for an array
implementation



05-20: Adding Previous

Add a new operation to the iterator: previous

Move the iterator back one element, return the
previous elememt

next() followed by previous(), both return same
element

How would we implement previous for an array
implementation

Subtract one from the index of the current
location



05-21: Adding Previous

Add a new operation to the iterator: previous

Move the iterator back one element

How would we implement previous for a linked list
implementation



05-22: Adding Previous

Add a new operation to the iterator: previous

Move the iterator back one element

How would we implement previous for a linked list
implementation

Start a temp pointer at the front of the list,
advance it until temp.next = current pointer

How can we improve the running time of
previous for the linked list version?



05-23: Doubly-Linked Lists

Each element in the list has two pointers – next
and previous

Can locate the previous element of any element
in the list in time O(1), instead of time O(n)

More space is required (two pointers for each
element, instead of one)

Do we still need a “dummy” element?



05-24: Multiple Iterators

We can have more than one iterator going in the
same list

Handy for comparing every element in the list to
every other element in the list

Can have a problem when one iterator modifies the
list while another iterator is active

Examples



05-25: Multiple Iterators

We can have more than one iterator going in the
same list

Can have a problem when one iterator modifies the
list while another iterator is active

Solutions:

Throw exception (how java libraries do it)

Inform the other iterators
List maintains a pointer to each active
iterators
When a change is made, each active iterator
needs to be updated, too


	{small lecturenumber -	heblocknumber :} Abstract Data Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} List ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} List ADT Operationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iteratorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iteratorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Iteratorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} List Iterator (first pass)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java Interfacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java List Interfaceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java List Iterator Interfaceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Using Iteratorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linked-List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linked-List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linked-List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linked-List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Linked-List Implementationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Previousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Previousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Previousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Adding Previousaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Doubly-Linked Listsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multiple Iteratorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multiple Iteratorsaddtocounter {blocknumber}{1}

