
CS245-2016S-05 Abstract Data Types and Lists 1

05-0: Abstract Data Types

• Recall that an Abstract Data Type is a definition of a type based on the operations that can be performed on it.

• An ADT is an interface

• Data in an ADT cannot be manipulated directly – only through operations defined in the interface

05-1: List ADT

• A List is an ordered collection of elements

• Each element in the list has a position

• Element 0, Element 1, Element 2, . . .

• We can access elements in the list through an iterator

05-2: List ADT Operations

• Create an empty list

• Add (append) an element to the end of the list

• Add (insert) an element at a spectified index

• Get the size (length) of the list

• Remove an element at a specific index

• Remove the first occurence of an element

• Get an element at a specific index

• Get an iterator to traverse the list

05-3: Iterators

• Think of an iterator as a “smart bookmark” that is associated with a specific data structure

• Often used to examine every element in a data structure

05-4: Iterators

Some operation on iterators:

• Retrieve the current element

• Move the iterator forward, to the next element in the data structure

• C++ has two different operations: “Get current” and “Move forward”

• Java has a single operation: “Get current and move forward”

• Move the iterator backwards, to the previous element in the data structure

• Not all iteratrs can go backwards

• Java also combines going backwards as “Get previous element and move iterator backwards”

05-5: Iterators

Some operation on iterators:



CS245-2016S-05 Abstract Data Types and Lists 2

• Delete element at current location (not always allowed)

• Insert an element at the current location (not always allowed)

• Operations specific to the particular data structure

05-6: List Iterator (first pass)

• Get the next element (moving the iterator one forwad)

• Check if their is a next element

• Remove the object at the current position (current position == last element that was returned from a “next”)

• Insert an element at the current position (right before the “next” element)

05-7: Java Interfaces

• A Java interface is a set of methods.

• Any class that implements an interface must implement all of these methods

05-8: Java List Interface

public interface List

{

public void clear();

public void add(Object o);

public void add(int index, Object o);

public void remove(int index);

public void remove(Object o);

public int size();

public Object get(int index);

public ListIterator listIterator();

public ListIterator listIterator(int index);

}

05-9: Java List Iterator Interface

public interface ListIterator

{

public void add(Object o);

public boolean hasNext();

public Object next();

public void remove();

public void set(Object o);

}

05-10: Using Iterators

• Print out a list L:



CS245-2016S-05 Abstract Data Types and Lists 3

List L;

...

ListIterator it = L.listIterator();

while (it.hasNext())

{

System.out.println(it.next());

}

05-11: Array Implementation

• Data is stored in an array

• Iterator stores index of next location

• To add an element to the current position:

• Shift all elements with index ¿= current one to right

• To remove and element from the middle of the array:

• Shift all elements with index ¿= current to the right

• List has a maximum size (unless we use growable arrays)

05-12: Array Implementation Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) next

add(insert) hasNext

remove add

listIterator() remove

listIterator(n) set

size

get

05-13: Array Implementation Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) Θ(1) next Θ(1)
add(insert) Θ(n) hasNext Θ(1)
remove Θ(n) add Θ(n)
listIterator() Θ(1) remove Θ(n)
listIterator(n) Θ(1) set Θ(1)
size Θ(1)
get Θ(1)

05-14: Linked-List Implementation

• Data is stored in a linked list

• Maintain a pointer to first element in list

• Iterator maintains a pointer to the next element

• To find the ith element:

• Start at the front of the list

• Skip past i elements



CS245-2016S-05 Abstract Data Types and Lists 4

How do we insert an element before the next element? How do we remove the “current” element?

05-15: Linked-List Implementation

• Data is stored in a linked list

• Maintain a pointer to first element in list

• Iterator maintains a pointer to the element before the next element (“current” element) and a pointer to the

element before the current element.

• To find the ith element:

• Start at the front of the list

• Skip past i elements

What should “current” pointer be when the “next” element is the first element in the list?

05-16: Linked-List Implementation

• Data is stored in a linked list – with a dummy first element

• Maintain a pointer to first (dummy) element in list

• Iterator maintains a pointer to the element before the next element (“current” element) and the “previous” ele-

ment (what should “previous” be when the first element of the list is the next element in the list?)

• To find the ith element:

• Start at the front of the list

• Skip past (i+1) elements

05-17: Linked-List Implementation Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) next

add(insert) hasNext

remove add

listIterator() remove

listIterator(n) set

size

get

05-18: Linked-List Implementation Θ() Running Time for each operation:

List Operations Iterator Operations

add(append) Θ(1) next Θ(1)
add(insert) Θ(n) hasNext Θ(1)
remove Θ(n) add Θ(1)
listIterator() Θ(1) remove Θ(1)
listIterator(n) Θ(n) set Θ(1)
size Θ(1)
get Θ(n)

05-19: Adding Previous

• Add a new operation to the iterator: previous

• Move the iterator back one element, return the previous elememt

• next() followed by previous(), both return same element



CS245-2016S-05 Abstract Data Types and Lists 5

• How would we implement previous for an array implementation

05-20: Adding Previous

• Add a new operation to the iterator: previous

• Move the iterator back one element, return the previous elememt

• next() followed by previous(), both return same element

• How would we implement previous for an array implementation

• Subtract one from the index of the current location

05-21: Adding Previous

• Add a new operation to the iterator: previous

• Move the iterator back one element

• How would we implement previous for a linked list implementation

05-22: Adding Previous

• Add a new operation to the iterator: previous

• Move the iterator back one element

• How would we implement previous for a linked list implementation

• Start a temp pointer at the front of the list, advance it until temp.next = current pointer

• How can we improve the running time of previous for the linked list version?

05-23: Doubly-Linked Lists

• Each element in the list has two pointers – next and previous

• Can locate the previous element of any element in the list in time O(1), instead of time O(n)

• More space is required (two pointers for each element, instead of one)

• Do we still need a “dummy” element?

05-24: Multiple Iterators

• We can have more than one iterator going in the same list

• Handy for comparing every element in the list to every other element in the list

• Can have a problem when one iterator modifies the list while another iterator is active

• Examples

05-25: Multiple Iterators

• We can have more than one iterator going in the same list

• Can have a problem when one iterator modifies the list while another iterator is active

• Solutions:

• Throw exception (how java libraries do it)

• Inform the other iterators

• List maintains a pointer to each active iterators

• When a change is made, each active iterator needs to be updated, too

•


