Data Structures and Algorithms
CS245-2017S5-06

Binary Search Trees

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

06-0: Ordered List ADT

Operations:

® |nsert an element in the list

® Check if an element is in the list

® Remove an element from the list

® Print out the contents of the list, in order

06-1: Implementing Ordered List

Using an Ordered Array — Running times:

Check
Insert
Remove
Print

06-2: Implementing Ordered List

Using an Ordered Array — Running times:

Check ©(Ign)
Insert O(n)
Remove ©O(n)
Print O(n)

06-3: Implementing Ordered List

Using an Unordered Array — Running times:

Check
Insert
Remove
Print

06-2: Implementing Ordered List

Using an Unordered Array — Running times:

Check (n)
Insert (1)
Remove ©(n) Need to find element first!
Print O(nlgn)
(Given a fast sorting algorithm)

O
O

06-5: Implementing Ordered List

Using an Ordered Linked List — Running times:

Check
Insert
Remove
Print

06-6: Implementing Ordered List

Using an Ordered Linked List — Running times:

Check

O(n)
Insert O(n)
Remove ©O(n)
Print O(n)

06-7: 1he Best of Both Worlds

® | inked Lists — Insert fast / Find slow
® Arrays — Find fast / Insert slow

® The only way to examine nth element in a linked
list Is to traverse (n-1) other elements

> 4 —> 8 —» 12 | —» 15 | —» 22 | 25 | 1>

® |f we could leap to the middle of the list ...

o6-8: 1he Best of Both Worlds

> 4

8

12

15

22

25

28

06-9: 1he Best of Both Worlds

:

4

—

8

-

12

-

15

— >

22

ove the initial pointer to the midd

v

4

8

12

15

22

>

e’ve cut our search time in half! Have we changed

'y

e ©() running time?

25

28

e of the list:

25

28

o6-10: 1he Best of Both Worlds

> 4 —> 8 —> 12 ——> 15 ——> 22 »| 25 —>

ove the initial pointer to the middle of the list:
v

4 —>{ 8 —> 12 15| — > 22 > 25 —>

'y

e’ve cut our search time in half! Have we changed
e ©() running time?

opeat the process!

o6-11: The Best of Both Worlds

12 15 22 25 28
v

12 15 22 25 28
v

12 15 22 — |25 28

o6-12: The Best of Both Worlds

rab the first element of the list:

v

4

<-—

8

-

12

15

22

28

Y

ve it a good shake -

i

i

N

i

NEE

06-13: Binary Trees

Binary Trees are Recursive Data Structures
® Base Case: Empty Tree

® Recursive Case: Node, consiting of:
e Left Child (Tree)
* Right Child (Tree)
e Data

o6-14: Binary Tree Examples

The following are all Binary Trees (Though not Binary
Search Trees)

A A
B C 5
PN 7
D E /C
\ -

06-15: Tree Terminology

® Parent/ Child

® | eaf node

® Root node

® Edge (between nodes)
® Path

® Ancestor / Descendant

® Depth of a node n
e Length of path from root to n

® Height of a tree
e (Depth of deepest node) + 1

o6-16: FUll Binary Tree

® Fach node has 0 or 2 children
® Full Binary Trees

n

® Not Full Binary Trees

AW

06-17: Complete Binary Tree

® Can be built by starting at the root, and filling the
tree by levels from left to right

® Complete Binary Trees

fe¥e

® Not Complete Binary Trees

Ve

o6-18: Binary Search Trees

® Binary Irees

® For each node n, (value stored at node n) > (value
stored in left subtree)

® For each node n, (value stored at node n) < (value
stored in right subtree)

o6-19: Example Binary Search Trees

06-20: Implementing BSTs

® Fach Node in a BST is implemented as a class:

public class Node {
public Comparable data;
public Node left;
public Node right,;

}

06-21: Implementing BSTs

public class Node {

public Node(Comparable data, Node left, Node right) {
this.data = data;
this.left = left;
this.right = right;

public Node left() {

return left;

}
public Node setLeft(Node newLeft) {
left = newLeft

(etc)
private Comparable data;

private Node left;
private Node right;

06-22: FInding an Element in a BST

® Binary Search Trees are recursive data structures,
so most operations on them will be recursive as

well
® Recall how to write a recursive algorithm ...

06-23: Writing a Recursive Algorithm

® Determine a small version of the problem, which
can be solved immediately. This is the base case

® Determine how to make the problem smaller

® Once the problem has been made smaller, we can
assume that the function that we are writing will
work correctly on the smaller problem (Recursive
Leap of Faith)

e Determine how to use the solution to the
smaller problem to solve the larger problem

06-24: FInding an Element in a BST

® First, the Base Case — when is it easy to determine
If an element is stored in a Binary Search Tree?

06-25: FInding an Element in a BST

® First, the Base Case — when is it easy to determine
If an element is stored in a Binary Search Tree?

* |If the tree is empty, then the element can'’t be
there

e |f the element is stored at the root, then the
element Is there

06-26: FInding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

06-27: FInding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

* Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

06-28: FInding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

* Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

* |f the element we are trying to find is < the
element stored at the root, use the left subtree.
Otherwise, use the right subtree.

06-29: FInding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

* Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

* |f the element we are trying to find is < the
element stored at the root, use the left subtree.
Otherwise, use the right subtree.

® How do we use the solution to the subproblem to
solve the original problem?

06-30: FInding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

* Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

* |f the element we are trying to find is < the
element stored at the root, use the left subtree.
Otherwise, use the right subtree.

® How do we use the solution to the subproblem to
solve the original problem?

* The solution to the subproblem is the solution
to the original problem (this is not always the
case in recursive algorithms)

06-31: FInding an Element in a BST

To find an element e in a Binary Search Tree 1"

f 1" 1s empty, then eis notin [’
f the root of 1" contains e, theneisin [’

f e < the element stored in the root of 7°:
e | ook for e in the left subtree of T

Otherwise

* Look for e in the right subtree of I’

06-32: FInding an Element in a BST

boolean find(Node tree, Comparable elem) {
if (tree == null)
return false;
if (elem.compareTo(tree.element()) == 0)
return true;
if (elem.compareTo(tree) < 0)
return find(tree.left(), elem);
else
return find(tree.right(), elem);

06-33: Printing out a BST

To print out all element in a BST:

® Print all elements in the left subtree, in order
® Print out the element at the root of the tree
® Print all elements in the right subtree, in order

06-32: Printing out a BST

To print out all element in a BST:

® Print all elements in the left subtree, in order
® Print out the element at the root of the tree

® Print all elements in the right subtree, in order

e Each subproblem is a smaller version of the
original problem — we can assume that a
recursive call will work!

06-35: Printing out a BST

® What is the base case for printing out a Binary
Search Tree — what is an easy tree to print out?

06-36: Printing out a BST

® What is the base case for printing out a Binary
Search Tree — what is an easy tree to print out?

® An empty tree is extremely easy to print out — do
nothing!

® Code for printing a BST ...

06-37: Printing out a BST

void print(Node tree) {
if (tree != null) {
print (tree.left());
System.out.println(tree.element());
print(tree.right());

¥
¥

06-38: Printing out a BST

Examples

06-39: Iree Traversals

* PREORDER Traversal
* Do operation on root of the tree
* Traverse left subtree
* Traverse right subtree

® INORDER Traversal
* Traverse left subtree
* Do operation on root of the tree
* Traverse right subtree

¢ POSTORDER Traversal
* Traverse left subtree
* Traverse right subtree
* Do operation on root of the tree

oe-20: PREORDER Examples

06-1: POSTORDER Examples

06-22: INORDER Examples

06-43: BST Minimal Element

To find the minimal element in a BST:

® Base Case: When is it easy to find the smallest
element in a BST?

® Recursive Case: How can we make the problem
smaller?

How can we use the solution to the smaller
problem to solve the original problem?

06-44: BST Minimal Element

To find the minimal element in a BST:
Base Case:

® When is it easy to find the smallest element in a
BST?

06-45: BST Minimal Element

To find the minimal element in a BST:
Base Case:

® When is it easy to find the smallest element in a
BST?

* When the left subtree is empty, then the
element stored at the root is the smallest
element in the tree.

06-46: BST Minimal Element

To find the minimal element in a BST:
Recursive Case:

® How can we make the problem smaller?

06-47:. BST Minimal Element

To find the minimal element in a BST:
Recursive Case:

® How can we make the problem smaller?

* Both the left and right subtrees are smaller
versions of the same problem

® How can we use the solution to a smaller problem
to solve the original problem?

06-48: BST Minimal Element

To find the minimal element in a BST:
Recursive Case:

® How can we make the problem smaller?

* Both the left and right subtrees are smaller
versions of the same problem

® How can we use the solution to a smaller problem
to solve the original problem?
* The smallest element in the left subtree is the
smallest element in the tree

06-40: BST Minimal Element

Comparable minimum(Node tree) A
if (tree == null)
return null;
if (tree.left() == null)
return tree.element();
else
return minimum(tree.left());

06-50: BST Minimal Element

lterative Version

Comparable minimum(Node tree) A
if (tree == null)
return null;
while (tree.left() != null)
tree = tree.left();
return tree.element();

¥

06-51: Inserting e into BST 7T

® What is the base case — an easy tree to insert an
element into?

06-52: Inserting e into BST 7T

® What is the base case — an easy tree to insert an
element into?

* An empty tree
* Create a new tree, containing the element e

06-53: Inserting e into BST 7T

® Recursive Case: How do we make the problem
smaller?

06-54: Inserting e into BST 7T

® Recursive Case: How do we make the problem
smaller?

* The left and right subtrees are smaller versions
of the same problem.

e How do we use these smaller versions of the
problem?

06-55: Inserting e into BST 7T

® Recursive Case: How do we make the problem
smaller?

* The left and right subtrees are smaller versions
of the same problem

e |nsert the element into the left subtree if e <
value stored at the root, and insert the element

into the right subtree if e > value stored at the
root

06-56: Inserting e into BST 7T

® Base case — 1 is empty:
e Create a new tree, containing the element e

® Recursive Case:

e |f eis less than the element at the root of 7T,
Insert e into left subtree

* |If e Is greater than the element at the root of 7',
Insert e into the right subtree

06-57: 1ree Manipulation in Java

® Tree manipulation functions return trees

® |nsert method takes as input the old tree and the
element to insert, and returns the new tree, with
the element inserted

e Old value (pre-insertion) of tree will be
destroyed
® Jo insert an element e into a tree T:
e T = insert(T, e);

06-58: Inserting e into BST 7T

Node insert(Node tree, Comparable elem) {

if (tree == null) {
return new Node(elem);

if (elem.compareTo(tree.element() <= 0)) {
tree.setLeft(insert(tree.left(), elem));
return tree;

+ else {
tree.setRight(insert(tree.right(), elem));
return tree;

¥
¥

06-59: Deleting From a BST

® Removing a leaf:

06-60: Deleting From a BST

® Removing a leaf:
* Remove element immediately

06-61: Deleting From a BST

® Removing a leaf:
* Remove element immediately

® Removing a node with one child:

06-62: Deleting From a BST

® Removing a leaf:
* Remove element immediately

® Removing a node with one child:
e Just like removing from a linked list
* Make parent point to child

06-63: Deleting From a BST

® Removing a leaf:
* Remove element immediately

® Removing a node with one child:
e Just like removing from a linked list
* Make parent point to child

® Removing a node with two children:

06-64: Deleting From a BST

® Removing a leaf:
* Remove element immediately

® Removing a node with one child:
e Just like removing from a linked list
* Make parent point to child

® Removing a node with two children:

* Replace node with largest element in left
subtree, or the smallest element in the right
subtree

06-65: Comparable vs. .key() method

® We have been storing “Comparable” elements in
BSTs

® Alternately, could use a “key()” method — elements
stored in BSTs must implement a key() method,
which returns an integer.

® We can combine the two methods

 Each element stored in the tree has a key()
method

e key() method returns Comparable class

06-66: BST Implementation Details

® Use BSTs to implement Ordered List ADT

® QOperations
* |nsert
e Find
e Remove
e Print in Order
® The specification (interface) should not specify an
iImplementation

e Allow several different implementations of the
same interface

06-67: BST Implementation Details

® BST functions require the root of the tree be sent in
as a parameter

® Ordered list functions should not contain
implementation details!

® \What should we do?

06-68: BST Implementation Details

® BST functions require the root of the tree be sent in
as a parameter

® Ordered list functions should not contain
implementation details!

® \What should we do?
e Private variable, holds root of the tree

* Private recursive methods, require root as an
argument

* Public methods call private methods, passing in
private root

	{small lecturenumber -	heblocknumber :} Ordered List ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Ordered Listaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} The Best of Both Worldsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Tree Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Tree Terminologyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Full Binary Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Complete Binary Treeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Search Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example Binary Search Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing BSTsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing BSTsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Writing a Recursive Algorithmaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Finding an Element in a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Tree Traversalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} PREORDER Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} POSTORDER Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} INORDER Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Minimal Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Tree Manipulation in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inserting e into BST Taddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deleting From a BSTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Comparable vs. .key()
methodaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Implementation Detailsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Implementation Detailsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} BST Implementation Detailsaddtocounter {blocknumber}{1}

