Data Structures and Algorithms
CS245-2017S-08

Priority Queues — Heaps

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

os-0: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Keys are “priorities”, with smaller keys having a “better”
priority

os-1: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Implementation:

® Sorted Array
Add Element

Remove Smallest Key

0s-2: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Implementation:

® Sorted Array
Add Element O(n)
Remove Smallest Key O(1)
(using circular array)

os-3: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Implementation:

® Binary Search Tree
Add Element
Remove Smallest Key

0s-4: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Implementation:

® Binary Search Tree
Add Element O(lgn)
Remove Smallest Key O(lgn)

If the tree is balanced

0s-5: Priority Queue ADT

Operations

® Add an element / key pair
® Return (and remove) element with smallest key

Implementation:

® Binary Search Tree
Add Element O(n)
Remove Smallest Key O(n)

Computer Scientists are Pessimists
(Murphy was right)

0s-6: Heap Definition

® Complete Binary Tree

® Heap Property

* For every subtree in a tree, each value in the
subtree is > value stored at the root of the
subtree

0s-7: Heap Examples

/ \
PN
9/\8 5/\4

Valid Heap

0s-3: Heap Examples

/\
2/\9 /\
N 8k

Invalid Heap

0s-o: Heap Insert

® What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?

os-10: Heap Insert

® What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?
* “End” of the tree — as a child of the shallowest
leaf that is farthest to the left

* Will the resulting tree still be a heap?

0s-11: Heap Insert

® What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?
* “End” of the tree — as a child of the shallowest
leaf that is farthest to the left

® |nserting an element at the “end” of the heap may
break the heap property

* Swap the value up the tree (examples)

0s-12: Heap Insert

® Running time for Insert?

0s-13: Heap Insert

® Running time for Insert?

e Place element at end of tree: O(1) (We'll see a
clever way to find the “end” of the tree in a bit)

e Swap element up the tree: O(height of tree)
(Worst case, swap all the way up to the root)
- Height of a Complete Binary Tree with n
nodes?

os-14: Heap Insert

® Running time for Insert?

e Place element at end of tree: O(1) (We'll see a
clever way to find the “end” of the tree in a bit

e Swap element up the tree: O(height of tree)
(Worst case, swap all the way up to the root)
- Height of a Complete Binary Tree with n
nodes = O(lgn)

® Total running time: ©(lgn) in the worst case

0s-15: Heap Remove Smallest

® Finding the smallest element is easy — at the root
of the tree

® Removing the Root of the heap is hard

® What element is easy to remove? How could this
help us?

0s-16: Heap Remove Smallest

® Finding the smallest element is easy — at the root
of the tree

® Removing the Root of the heap is hard

® Removing the element at the “end” of the heap is
easy
e Copy last element of heap into root

e Remove the last element
- Problem?

0s-17: Heap Remove Smallest

® Finding the smallest element is easy — at the root
of the tree

® Removing the Root of the heap is hard

® Removing the element at the “end” of the heap is
easy
e Copy last element of heap into root

e Remove the last element
- May break the heap property

0s-18: Heap Remove Smallest

® Finding the smallest element is easy — at the root
of the tree

® Removing the Root of the heap is hard

® Removing the element at the “end” of the heap is
easy
e Copy last element of heap into root
* Remove the last element

 Push the root down, until heap property Is
satisfied

0s-19: Heap Remove Smallest

® Running time for remove smallest?

0s-20: Heap Remove Smallest

® Running time for remove smallest?

e Copy last element into root, remove last
element: O(1), given a O(1) time method to
find the last element

e Push the root down: O(height of the tree)
(Worst case, push element all the way down)
- As before, Complete Binary Tree with n
elements has height ©(lgn)

® Total time: ©(lgn) in the worst case

0s-21: Representing Heaps

® Represent heaps using pointers, much like BSTs

* Need to add parent pointers for insert to work
correctly

* Need to maintain a pointer to the location to
iInsert the next element (this could be hard to
update & maintain)

e Space needed to store pointers — 3 per node —
could be greater than the space need to store
the data in the heap!

* Memory allocation and deallocation is slow
® There is a better way!

0s-22: Representing Heaps

A Complete Binary Tree can be stored in an array:

2/1\14
TN 1
7/\6 8/\

10 11 12 13

0s-23: CBTs as Arrays

® The root is stored at index 1

® For the node stored at index «:
e | eft child is stored at index 2 x ¢
* Right child is stored at index 2 x 7 + 1
e Parent is stored at index |¢/2]

0s-24: CBTs as Arrays

Finding the parent of a node
int parent(int n) {
return (n / 2);

¥

Finding the left child of a node

int leftchild(int n) {
return 2 * n;

¥

Finding the right child of a node
int rightchild(int n) {
return 2 *x n + 1;

}

0s-25: Building a Heap

Build a heap out of n elements

0s-26: Building a Heap

Build a heap out of n elements

® Start with an empty heap
® Do n insertions into the heap

MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)
H.insert(A[i]);

Running time?

0s-27: Building a Heap

Build a heap out of n elements

® Start with an empty heap
® Do n insertions into the heap

MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)
H.insert(A[i]);

Running time? O(nlgn) — is this bound tight?

0s-28: Building a Heap

Total time: C1 + Z?:l) 1gl

n

Z colgt

i=n/2

IV

C1 + Z Co ng
1=1

S e lg(n/2)

i=n/2
(n/2)cy1g(n/2)

= (n/2)ex((lgn) — 1)
e Qnlgn)

|V

Running Time: ©(nlgn)

0s-29: Building a Heap

Build a heap from the bottom up

® Place elements into a heap array
® Fach leaf is a legal heap

® First potential problem is at location |i/2|

0s-30: Building a Heap

Build a heap from the bottom up

® Place elements into a heap array
® Fach leaf is a legal heap

® First potential problem is at location |i/2|

for(i=n/2; i>=0; i--)
pushdown (i) ;

0s-31: Building a Heap

How many swaps, worst case? If every pushdown has
to swap all the way to a leatf:

n/4 elements 1 swap

n/8 elements 2 swaps
n/16 elements 3 swaps
n/32 elements 4 swaps

Total # of swaps:

n/4+2n/8+3n/16 +4n/32+ ...+ (lgn)n/n

0s-32: Decreasing a Key

® (Given a specific element in a heap, how can we
decrease the key of that element, and maintain the
heap property?
e Examples

0s-33: Decreasing a Key

® (Given a specific element in a heap, how can we
decrease the key of that element, and maintain the
heap property?
e Examples
® Push the element up the tree, just like after an
Insert

e Examples

0s-32: Decreasing a Key

® Decrease the key of a specific element in a heap:
e Decrease the key value
* Push the element up the tree, just like after an
insert

® Time required?

0s-35: Decreasing a Key

® Decrease the key of a specific element in a heap:
e Decrease the key value
* Push the element up the tree, just like after an
insert

® Time required: O(Ign), in the worst case.

0s-36: Removing an Element

® Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?
e Examples

0s-37: Removing an Element

® Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?
e Examples

® Decrease key to a value < root
® Remove smallest element

0s-38: Removing an Element

® Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?
e Examples

® Decrease key to a value < root. Time ©(Ign)
worst case

® Remove smallest element. Time ©(lg n) worst
case

0s-39: Java Specifics

® When inserting an element, push value up until it
reaches the root, or it's > its parent

e QOur while statement will have two tests
® We can insert a sentinel value at index 0,
guaranteed to be < any element in the heap
* Now our while loop only requires a single test

	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java Specificsaddtocounter {blocknumber}{1}

