Data Structures and Algorithms

CS245-2017S-08

Priority Queues – Heaps

David Galles

Department of Computer Science
University of San Francisco
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Keys are “priorities”, with smaller keys having a “better” priority
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Sorted Array
 - Add Element
 - Remove Smallest Key
08-2: Priority Queue ADT

Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Sorted Array
 - Add Element: $O(n)$
 - Remove Smallest Key: $O(1)$ (using circular array)
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree
 - Add Element
 - Remove Smallest Key
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree

 - Add Element $O(\lg n)$
 - Remove Smallest Key $O(\lg n)$

If the tree is balanced
08-5: Priority Queue ADT

Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree
 - Add Element $O(n)$
 - Remove Smallest Key $O(n)$

Computer Scientists are Pessimists
(Murphy was right)
Heap Definition

- Complete Binary Tree
- Heap Property
 - For every subtree in a tree, each value in the subtree is \geq value stored at the root of the subtree
08-7: Heap Examples

Valid Heap
08-8: Heap Examples

Invalid Heap
What is the only place we can insert an element in a heap, and maintain the complete binary tree property?
08-10: Heap Insert

- What is the only place we can insert an element in a heap, and maintain the complete binary tree property?
 - “End” of the tree – as a child of the shallowest leaf that is farthest to the left
 - Will the resulting tree still be a heap?
What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

- “End” of the tree – as a child of the shallowest leaf that is farthest to the left

Inserting an element at the “end” of the heap may break the heap property

- Swap the value up the tree (examples)
08-12: **Heap Insert**

- Running time for Insert?
Running time for Insert?
- Place element at end of tree: $O(1)$ (We’ll see a clever way to find the “end” of the tree in a bit)
- Swap element up the tree: $O(\text{height of tree})$ (Worst case, swap all the way up to the root)
 - Height of a Complete Binary Tree with n nodes?
08-14: Heap Insert

- Running time for Insert?
 - Place element at end of tree: $O(1)$ (We’ll see a clever way to find the “end” of the tree in a bit)
 - Swap element up the tree: $O(\text{height of tree})$ (Worst case, swap all the way up to the root)
 - Height of a Complete Binary Tree with n nodes = $\Theta(\log n)$

- Total running time: $\Theta(\log n)$ in the worst case
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

What element is easy to remove? How could this help us?
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is easy
 • Copy last element of heap into root
 • Remove the last element
 • Problem?
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is easy
 • Copy last element of heap into root
 • Remove the last element
 • May break the heap property
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is easy
 - Copy last element of heap into root
 - Remove the last element
 - Push the root down, until heap property is satisfied
08-19: Heap Remove Smallest

- Running time for remove smallest?
08-20: **Heap Remove Smallest**

- Running time for remove smallest?
 - Copy last element into root, remove last element: \(O(1) \), given a \(O(1) \) time method to find the last element
 - Push the root down: \(O(\text{height of the tree}) \)
 - (Worst case, push element all the way down)
 - As before, Complete Binary Tree with \(n \) elements has height \(\Theta(\lg n) \)

- Total time: \(\Theta(\lg n) \) in the worst case
Representing Heaps

- Represent heaps using pointers, much like BSTs
 - Need to add parent pointers for insert to work correctly
 - Need to maintain a pointer to the location to insert the next element (this could be hard to update & maintain)
 - Space needed to store pointers – 3 per node – could be greater than the space need to store the data in the heap!
 - Memory allocation and deallocation is slow
- There is a better way!
A Complete Binary Tree can be stored in an array:
• The root is stored at index 1
• For the node stored at index \(i \):
 • Left child is stored at index \(2 \times i \)
 • Right child is stored at index \(2 \times i + 1 \)
 • Parent is stored at index \(\lfloor i/2 \rfloor \)
Finding the parent of a node

```c
int parent(int n) {
    return (n / 2);
}
```

Finding the left child of a node

```c
int leftchild(int n) {
    return 2 * n;
}
```

Finding the right child of a node

```c
int rightchild(int n) {
    return 2 * n + 1;
}
```
08-25: Building a Heap

Build a heap out of n elements
08-26: Building a Heap

Build a heap out of n elements

- Start with an empty heap
- Do n insertions into the heap

MinHeap $H = \text{new MinHeap}();$
for(i=0 < i<A.size(); i++)
 H.insert(A[i]);

Running time?
Building a Heap

Build a heap out of \(n \) elements

- Start with an empty heap
- Do \(n \) insertions into the heap

```java
MinHeap H = new MinHeap();
for (i = 0; i < A.size(); i++)
    H.insert(A[i]);
```

Running time? \(O(n \lg n) \) – is this bound tight?
Total time: \(c_1 + \sum_{i=1}^{n} c_2 \log i \)

\[
c_1 + \sum_{i=1}^{n} c_2 \log i \geq \sum_{i=n/2}^{n} c_2 \log i \geq \sum_{i=n/2}^{n} c_2 \log(n/2) = (n/2) c_2 \log(n/2) = (n/2) c_2 ((\log n) - 1) \in \Omega(n \log n)
\]

Running Time: \(\Theta(n \log n) \)
Build a heap from the bottom up

- Place elements into a heap array
- Each leaf is a legal heap
- First potential problem is at location $\lfloor i/2 \rfloor$
Build a heap from the bottom up

- Place elements into a heap array
- Each leaf is a legal heap
- First potential problem is at location $\lfloor i/2 \rfloor$

```c
for(i=n/2; i>=0; i--)
    pushdown(i);
```
Building a Heap

How many swaps, worst case? If every pushdown has to swap all the way to a leaf:

\[
\begin{align*}
 n/4 \text{ elements} & \quad 1 \text{ swap} \\
 n/8 \text{ elements} & \quad 2 \text{ swaps} \\
 n/16 \text{ elements} & \quad 3 \text{ swaps} \\
 n/32 \text{ elements} & \quad 4 \text{ swaps} \\
 \ldots \\
\end{align*}
\]

Total # of swaps:

\[
\frac{n}{4} + \frac{2n}{8} + \frac{3n}{16} + \frac{4n}{32} + \ldots + (\log n)\frac{n}{n}
\]
Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?

Examples
Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?

- Examples

Push the element up the tree, just like after an insert

- Examples
Decreasing a Key

- Decrease the key of a specific element in a heap:
 - Decrease the key value
 - Push the element up the tree, just like after an insert
- Time required?
Decreasing a Key

- Decrease the key of a specific element in a heap:
 - Decrease the key value
 - Push the element up the tree, just like after an insert

- Time required: $\Theta(\log n)$, in the worst case.
Removing an Element

Given a specific element in a heap, how can we remove that element, and maintain the heap property?

- Examples
Removing an Element

Given a specific element in a heap, how can we remove that element, and maintain the heap property?

- Examples
 - Decrease key to a value < root
 - Remove smallest element
• Given a specific element in a heap, how can we remove that element, and maintain the heap property?
 • Examples

• Decrease key to a value < root. Time $\Theta(\lg n)$ worst case

• Remove smallest element. Time $\Theta(\lg n)$ worst case
When inserting an element, push value up until it reaches the root, or it’s ≥ its parent

- Our while statement will have two tests

We can insert a sentinel value at index 0, guaranteed to be ≤ any element in the heap

- Now our while loop only requires a single test