
Data Structures and Algorithms
CS245-2017S-08

Priority Queues – Heaps

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


08-0: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Keys are “priorities”, with smaller keys having a “better”
priority



08-1: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Implementation:

Sorted Array

Add Element

Remove Smallest Key



08-2: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Implementation:

Sorted Array

Add Element O(n)

Remove Smallest Key O(1)

(using circular array)



08-3: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Implementation:

Binary Search Tree

Add Element

Remove Smallest Key



08-4: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Implementation:

Binary Search Tree

Add Element O(lg n)

Remove Smallest Key O(lg n)

If the tree is balanced



08-5: Priority Queue ADT

Operations

Add an element / key pair

Return (and remove) element with smallest key

Implementation:

Binary Search Tree

Add Element O(n)

Remove Smallest Key O(n)

Computer Scientists are Pessimists

(Murphy was right)



08-6: Heap Definition

Complete Binary Tree

Heap Property

For every subtree in a tree, each value in the
subtree is ≥ value stored at the root of the
subtree



08-7: Heap Examples

1

2 4

7 3 14 15

9 8 5 4

Valid Heap



08-8: Heap Examples

1

8 5

2 9 4 14

5 7 10 13

Invalid Heap



08-9: Heap Insert

What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?



08-10: Heap Insert

What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?

“End” of the tree – as a child of the shallowest
leaf that is farthest to the left

Will the resulting tree still be a heap?



08-11: Heap Insert

What is the only place we can insert an element in
a heap, and maintain the complete binary tree
property?

“End” of the tree – as a child of the shallowest
leaf that is farthest to the left

Inserting an element at the “end” of the heap may
break the heap property

Swap the value up the tree (examples)



08-12: Heap Insert

Running time for Insert?



08-13: Heap Insert

Running time for Insert?

Place element at end of tree: O(1) (We’ll see a
clever way to find the “end” of the tree in a bit)

Swap element up the tree: O(height of tree)
(Worst case, swap all the way up to the root)

Height of a Complete Binary Tree with n
nodes?



08-14: Heap Insert

Running time for Insert?

Place element at end of tree: O(1) (We’ll see a
clever way to find the “end” of the tree in a bit

Swap element up the tree: O(height of tree)
(Worst case, swap all the way up to the root)

Height of a Complete Binary Tree with n
nodes = Θ(lg n)

Total running time: Θ(lg n) in the worst case



08-15: Heap Remove Smallest

Finding the smallest element is easy – at the root
of the tree

Removing the Root of the heap is hard

What element is easy to remove? How could this
help us?



08-16: Heap Remove Smallest

Finding the smallest element is easy – at the root
of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Copy last element of heap into root

Remove the last element
Problem?



08-17: Heap Remove Smallest

Finding the smallest element is easy – at the root
of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Copy last element of heap into root

Remove the last element
May break the heap property



08-18: Heap Remove Smallest

Finding the smallest element is easy – at the root
of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Copy last element of heap into root

Remove the last element
Push the root down, until heap property is
satisfied



08-19: Heap Remove Smallest

Running time for remove smallest?



08-20: Heap Remove Smallest

Running time for remove smallest?

Copy last element into root, remove last
element: O(1), given a O(1) time method to
find the last element

Push the root down: O(height of the tree)
(Worst case, push element all the way down)

As before, Complete Binary Tree with n
elements has height Θ(lg n)

Total time: Θ(lg n) in the worst case



08-21: Representing Heaps

Represent heaps using pointers, much like BSTs

Need to add parent pointers for insert to work
correctly

Need to maintain a pointer to the location to
insert the next element (this could be hard to
update & maintain)

Space needed to store pointers – 3 per node –
could be greater than the space need to store
the data in the heap!

Memory allocation and deallocation is slow

There is a better way!



08-22: Representing Heaps

A Complete Binary Tree can be stored in an array:

1

2 14

5 3 16 15

7 6 8 9

1 2 14 5 3 16 15 7 6 8 9
0 1 2 3 4 5 6 7 8 9 10 11 12 13



08-23: CBTs as Arrays

The root is stored at index 1

For the node stored at index i:

Left child is stored at index 2 ∗ i

Right child is stored at index 2 ∗ i+ 1

Parent is stored at index ⌊i/2⌋



08-24: CBTs as Arrays

Finding the parent of a node

int parent(int n) {
return (n / 2);

}

Finding the left child of a node

int leftchild(int n) {
return 2 * n;

}

Finding the right child of a node

int rightchild(int n) {
return 2 * n + 1;

}



08-25: Building a Heap

Build a heap out of n elements



08-26: Building a Heap

Build a heap out of n elements

Start with an empty heap

Do n insertions into the heap

MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time?



08-27: Building a Heap

Build a heap out of n elements

Start with an empty heap

Do n insertions into the heap

MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time? O(n lg n) – is this bound tight?



08-28: Building a Heap

Total time: c1 +
∑n

i=1
c2 lg i

c1 +
n∑

i=1

c2 lg i ≥
n∑

i=n/2

c2 lg i

≥
n∑

i=n/2

c2 lg(n/2)

= (n/2)c2 lg(n/2)

= (n/2)c2((lg n)− 1)

∈ Ω(n lg n)

Running Time: Θ(n lg n)



08-29: Building a Heap

Build a heap from the bottom up

Place elements into a heap array

Each leaf is a legal heap

First potential problem is at location ⌊i/2⌋



08-30: Building a Heap

Build a heap from the bottom up

Place elements into a heap array

Each leaf is a legal heap

First potential problem is at location ⌊i/2⌋

for(i=n/2; i>=0; i--)
pushdown(i);



08-31: Building a Heap

How many swaps, worst case? If every pushdown has
to swap all the way to a leaf:

n/4 elements 1 swap

n/8 elements 2 swaps

n/16 elements 3 swaps

n/32 elements 4 swaps

. . .
Total # of swaps:

n/4 + 2n/8 + 3n/16 + 4n/32 + . . . + (lg n)n/n



08-32: Decreasing a Key

Given a specific element in a heap, how can we
decrease the key of that element, and maintain the
heap property?

Examples



08-33: Decreasing a Key

Given a specific element in a heap, how can we
decrease the key of that element, and maintain the
heap property?

Examples

Push the element up the tree, just like after an
insert

Examples



08-34: Decreasing a Key

Decrease the key of a specific element in a heap:

Decrease the key value

Push the element up the tree, just like after an
insert

Time required?



08-35: Decreasing a Key

Decrease the key of a specific element in a heap:

Decrease the key value

Push the element up the tree, just like after an
insert

Time required: Θ(lg n), in the worst case.



08-36: Removing an Element

Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?

Examples



08-37: Removing an Element

Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?

Examples

Decrease key to a value < root

Remove smallest element



08-38: Removing an Element

Given a specific element in a heap, how can we
remove that element, and maintain the heap
property?

Examples

Decrease key to a value < root. Time Θ(lg n)
worst case

Remove smallest element. Time Θ(lg n) worst
case



08-39: Java Specifics

When inserting an element, push value up until it
reaches the root, or it’s ≥ its parent

Our while statement will have two tests

We can insert a sentinel value at index 0,
guaranteed to be ≤ any element in the heap

Now our while loop only requires a single test


	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Priority Queue ADTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Examplesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Insertaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Heap Remove Smallestaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Heapsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} CBTs as Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Building a Heapaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decreasing a Keyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Removing an Elementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Java Specificsaddtocounter {blocknumber}{1}

