Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Keys are “priorities”, with smaller keys having a “better” priority
Priority Queue ADT

Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Sorted Array
 - Add Element
 - Remove Smallest Key
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Sorted Array
 - Add Element \(O(n) \)
 - Remove Smallest Key \(O(1) \)
 (using circular array)
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree
 - Add Element
 - Remove Smallest Key
Priority Queue ADT

Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree
 - Add Element $O(lg\ n)$
 - Remove Smallest Key $O(lg\ n)$

If the tree is balanced
Operations

- Add an element / key pair
- Return (and remove) element with smallest key

Implementation:

- Binary Search Tree
 - Add Element $O(n)$
 - Remove Smallest Key $O(n)$

Computer Scientists are Pessimists
(Murphy was right)
08-6: Heap Definition

- Complete Binary Tree
- Heap Property
 - For every subtree in a tree, each value in the subtree is \geq value stored at the root of the subtree
08-7: Heap Examples

Valid Heap
08-8: Heap Examples

```
  1
 / \
 8 5
/   \
2 9 4 14
/   /   \
5 7 10 13 4 5
```

Invalid Heap
What is the only place we can insert an element in a heap, and maintain the complete binary tree property?
What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

- “End” of the tree – as a child of the shallowest leaf that is farthest to the left
- Will the resulting tree still be a heap?
What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

- “End” of the tree – as a child of the shallowest leaf that is farthest to the left

Inserting an element at the “end” of the heap may break the heap property

- Swap the value up the tree (examples)
08-12: Heap Insert

- Running time for Insert?
Heap Insert

• Running time for Insert?
 • Place element at end of tree: $O(1)$ (We’ll see a clever way to find the “end” of the tree in a bit)
 • Swap element up the tree: $O($height of tree$)$ (Worst case, swap all the way up to the root)
 • Height of a Complete Binary Tree with n nodes?
Running time for Insert?

- Place element at end of tree: $O(1)$ (We’ll see a clever way to find the “end” of the tree in a bit)
- Swap element up the tree: $O(\text{height of tree})$ (Worst case, swap all the way up to the root)
 - Height of a Complete Binary Tree with n nodes = $\Theta(\lg n)$

Total running time: $\Theta(\lg n)$ in the worst case
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

What element is easy to remove? How could this help us?
08-16: **Heap Remove Smallest**

- Finding the smallest element is easy – at the root of the tree
- Removing the Root of the heap is hard
- Removing the element at the “end” of the heap is easy
 - Copy last element of heap into root
 - Remove the last element
 - Problem?
08-17: Heap Remove Smallest

- Finding the smallest element is easy – at the root of the tree
- Removing the Root of the heap is hard
- Removing the element at the “end” of the heap is easy
 - Copy last element of heap into root
 - Remove the last element
 - May break the heap property
Finding the smallest element is easy – at the root of the tree

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is easy

- Copy last element of heap into root
- Remove the last element
 - Push the root down, until heap property is satisfied
Heap Remove Smallest

- Running time for remove smallest?
• Running time for remove smallest?
 • Copy last element into root, remove last element: $O(1)$, given a $O(1)$ time method to find the last element
 • Push the root down: $O($height of the tree$)$ (Worst case, push element all the way down)
 • As before, Complete Binary Tree with n elements has height $\Theta(\lg n)$

• Total time: $\Theta(\lg n)$ in the worst case
Representing Heaps

- Represent heaps using pointers, much like BSTs
 - Need to add parent pointers for insert to work correctly
 - Need to maintain a pointer to the location to insert the next element (this could be hard to update & maintain)
 - Space needed to store pointers – 3 per node – could be greater than the space need to store the data in the heap!
 - Memory allocation and deallocation is slow
- There is a better way!
A Complete Binary Tree can be stored in an array:
CBTs as Arrays

- The root is stored at index 1
- For the node stored at index i:
 - Left child is stored at index $2 \times i$
 - Right child is stored at index $2 \times i + 1$
 - Parent is stored at index $\lfloor i/2 \rfloor$
Finding the parent of a node

```java
int parent(int n) {
    return (n / 2);
}
```

Finding the left child of a node

```java
int leftchild(int n) {
    return 2 * n;
}
```

Finding the right child of a node

```java
int rightchild(int n) {
    return 2 * n + 1;
}
```
Build a heap out of n elements
08-26: Building a Heap

Build a heap out of \(n \) elements

- Start with an empty heap
- Do \(n \) insertions into the heap

```java
MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)
    H.insert(A[i]);
```

Running time?
Build a heap out of n elements

- Start with an empty heap
- Do n insertions into the heap

```java
MinHeap H = new MinHeap();
for(i=0 < i<A.size(); i++)
    H.insert(A[i]);
```

Running time? $O(n \log n)$ – is this bound tight?
Total time: $c_1 + \sum_{i=1}^{n} c_2 \log i$

$\geq \sum_{i=n/2}^{n} c_2 \log i$

$\geq \sum_{i=n/2}^{n} c_2 \log(n/2)$

$= (n/2)c_2 \log(n/2)$

$= (n/2)c_2((\log n) - 1)$

$\in \Omega(n \log n)$

Running Time: $\Theta(n \log n)$
Build a heap from the bottom up

- Place elements into a heap array
- Each leaf is a legal heap
- First potential problem is at location $\lfloor i/2 \rfloor$
08-30: Building a Heap

Build a heap from the bottom up

- Place elements into a heap array
- Each leaf is a legal heap
- First potential problem is at location $\left\lfloor \frac{i}{2} \right\rfloor$

```plaintext
for (i = n/2; i >= 0; i--)
    pushdown(i);
```
How many swaps, worst case? If every *pushdown* has to swap all the way to a leaf:

- $n/4$ elements 1 swap
- $n/8$ elements 2 swaps
- $n/16$ elements 3 swaps
- $n/32$ elements 4 swaps

...

Total # of swaps:

$$n/4 + 2n/8 + 3n/16 + 4n/32 + \ldots + (\lg n)n/n$$
08-32: Decreasing a Key

- Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?
 - Examples
Decreasing a Key

Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?

- Examples

Push the element up the tree, just like after an insert

- Examples
Decreasing a Key

- Decrease the key of a specific element in a heap:
 - Decrease the key value
 - Push the element up the tree, just like after an insert
- Time required?
08-35: Decreasing a Key

- Decrease the key of a specific element in a heap:
 - Decrease the key value
 - Push the element up the tree, just like after an insert
- Time required: $\Theta(\lg n)$, in the worst case.
Removing an Element

Given a specific element in a heap, how can we remove that element, and maintain the heap property?

Examples
Removing an Element

Given a specific element in a heap, how can we remove that element, and maintain the heap property?

- Examples
 - Decrease key to a value < root
 - Remove smallest element
Removing an Element

Given a specific element in a heap, how can we remove that element, and maintain the heap property?

• Examples

• Decrease key to a value $< \text{root}$. Time $\Theta(lg \ n)$ worst case

• Remove smallest element. Time $\Theta(lg \ n)$ worst case
• When inserting an element, push value up until it reaches the root, or it’s \geq its parent
 • Our while statement will have two tests
• We can insert a *sentinel* value at index 0, guaranteed to be \leq any element in the heap
 • Now our while loop only requires a single test