Data Structures and Algorithms
CS245-2016S-FR
Final Review

David Galles
Department of Computer Science
University of San Francisco
Big-Oh Notation

\(O(f(n)) \) is the set of all functions that are bound from above by \(f(n) \).

\[T(n) \in O(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \leq c \times f(n) \text{ when } n > n_0 \]
FR-1: Big-Oh Examples

\[
n \in O(n) \ ? \\
10n \in O(n) \ ? \\
n \in O(10n) \ ? \\
n \in O(n^2) \ ? \\
n^2 \in O(n) \ ? \\
10n^2 \in O(n^2) \ ? \\
n \lg n \in O(n^2) \ ? \\
\ln n \in O(2n) \ ? \\
\lg n \in O(n) \ ? \\
3n + 4 \in O(n) \ ? \\
5n^2 + 10n - 2 \in O(n^3) \ ? O(n^2) \ ? O(n) \ ?
\]
FR-2: Big-Oh Examples

\[n \in O(n) \]
\[10n \in O(n) \]
\[n \in O(10n) \]
\[n \in O(n^2) \]
\[n^2 \notin O(n) \]
\[10n^2 \in O(n^2) \]
\[n \log n \in O(n^2) \]
\[\log n \in O(n) \]
\[3n + 4 \in O(n) \]
\[5n^2 + 10n - 2 \in O(n^3), \in O(n^2), \notin O(n) \]
Big-Oh Examples II

\[
\begin{align*}
\sqrt{n} & \in O(n) \ ? \\
lg n & \in O(2^n) \ ? \\
lg n & \in O(n) \ ? \\
n \lg n & \in O(n) \ ? \\
n \lg n & \in O(n^2) \ ? \\
\sqrt{n} & \in O(lg n) \ ? \\
lg n & \in O(\sqrt{n}) \ ? \\
n \lg n & \in O(n^{\frac{3}{2}}) \ ? \\
n^3 + n \lg n + n\sqrt{n} & \in O(n \lg n) \ ? \\
n^3 + n \lg n + n\sqrt{n} & \in O(n^3) \ ? \\
n^3 + n \lg n + n\sqrt{n} & \in O(n^4) \ ?
\end{align*}
\]
$\sqrt{n} \in O(n)$

$\lg n \in O(2^n)$

$\lg n \in O(n)$

$n \lg n \not\in O(n)$

$n \lg n \in O(n^2)$

$\sqrt{n} \not\in O(\lg n)$

$\lg n \in O(\sqrt{n})$

$n \lg n \in O(n^{\frac{3}{2}})$

$n^3 + n \lg n + n\sqrt{n} \not\in O(n \lg n)$

$n^3 + n \lg n + n\sqrt{n} \in O(n^3)$

$n^3 + n \lg n + n\sqrt{n} \in O(n^4)$
$f(n) = \begin{cases}
 n & \text{for } n \text{ odd} \\
 n^3 & \text{for } n \text{ even}
\end{cases}$

$g(n) = n^2$

$f(n) \in O(g(n))$?

$g(n) \in O(f(n))$?

$n \in O(f(n))$?

$f(n) \in O(n^3)$?
\(f(n) = \begin{cases}
 n & \text{for } n \text{ odd} \\
 n^3 & \text{for } n \text{ even}
\end{cases} \\
g(n) = n^2\)

\(f(n) \not\in O(g(n)) \)
\(g(n) \not\in O(f(n)) \)
\(n \in O(f(n)) \)
\(f(n) \in O(n^3) \)
FR-7: Big-Ω Notation

$\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$

$T(n) \in \Omega(f(n))$ if

$$\exists c, n_0 \text{ such that } T(n) \geq c \cdot f(n) \text{ when } n > n_0$$
FR-8: Big-Ω Notation

Ω(f(n)) is the set of all functions that are bound from below by f(n)

T(n) ∈ Ω(f(n)) if

∃c, n₀ such that T(n) ≥ c * f(n) when n > n₀

f(n) ∈ O(g(n)) ⇒ g(n) ∈ Ω(f(n))
FR-9: **Big-Θ Notation**

$\Theta(f(n))$ is the set of all functions that are bound *both* above *and* below by $f(n)$. Θ is a **tight bound**

$T(n) \in \Theta(f(n))$ if

$T(n) \in O(f(n)) \text{ and } T(n) \in \Omega(f(n))$
1. If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \)

2. If \(f(n) \in O(kg(n)) \) for any constant \(k > 0 \), then \(f(n) \in O(g(n)) \)

3. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n))) \)

4. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) \ast f_2(n) \in O(g_1(n) \ast g_2(n)) \)

(Also work for \(\Omega \), and hence \(\Theta \))
FR-11: Big-Oh Guidelines

- Don’t include constants/low order terms in Big-Oh
- Simple statements: $\Theta(1)$
- Loops: $\Theta(\text{inside}) \times \# \text{ of iterations}$
 - Nested loops work the same way
- Consecutive statements: Longest Statement
- Conditional (if) statements: $O(\text{Test} + \text{longest branch})$
for (i=1; i<n; i++)
 for (j=1; j < n/2; j++)
 sum++;
Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
 for (j=1; j < n/2; j++) Executed n/2 times
 sum++;

Running time: $O(n^2), \Omega(n^2), \Theta(n^2)$
for (i=1; i<n; i=i*2)
 sum++;

for (i=1; i<n; i=i*2) Executed $\lg n$ times
sum++;

Running Time: $O(\lg n)$, $\Omega(\lg n)$, $\Theta(\lg n)$
for (i=1; i<n; i=i*2)
 for (j=0; j < n; j = j + 1)
 sum++;
for (i=n; i >1; i = i / 2)
 for (j = 1; j < n; j = j * 2)
 for (k = 1; k < n; k = k * 3)
 sum++;
Recurrence Relations

\[T(n) = \text{Time required to solve a problem of size } n \]

Recurrence relations are used to determine the running time of recursive programs – recurrence relations themselves are recursive.

\[T(0) = \text{time to solve problem of size 0} \]
\[\quad \text{– Base Case} \]

\[T(n) = \text{time to solve problem of size } n \]
\[\quad \text{– Recursive Case} \]
long power(long x, long n) {
 if (n == 0)
 return 1;
 else
 return x * power(x, n-1);
}

\[T(0) = c_1 \] for some constant \(c_1 \)
\[T(n) = c_2 + T(n - 1) \] for some constant \(c_2 \)
long power(long x, long n) {
 if (n==0) return 1;
 if (n==1) return x;
 if (((n % 2) == 0))
 return power(x*x, n/2);
 else
 return power(x*x, n/2) * x;
}
long power(long x, long n) {
 if (n==0) return 1;
 if (n==1) return x;
 if ((n % 2) == 0)
 return power(x*x, n/2);
 else
 return power(x*x, n/2) * x;
}

T(0) = c_1
T(1) = c_2
T(n) = T(n/2) + c_3
(Assume n is a power of 2)
FR-21: Solving Recurrence Relations

\[T(n) = T(n/2) + c_3 \]
\[= T(n/4) + c_3 + c_3 \]
\[= T(n/4)2c_3 \]
\[= T(n/8) + c_3 + 2c_3 \]
\[= T(n/8)3c_3 \]
\[= T(n/16) + c_3 + 3c_3 \]
\[= T(n/16) + 4c_3 \]
\[= T(n/32) + c_3 + 4c_3 \]
\[= T(n/32) + 5c_3 \]
\[= \ldots \]
\[= T(n/2^k) + kc_3 \]
FR-22: Solving Recurrence Relations

\[T(0) = c_1 \]
\[T(1) = c_2 \]
\[T(n) = T(n/2) + c_3 \]
\[T(n) = T(n/2^k) + k c_3 \]

We want to get rid of \(T(n/2^k) \). Since we know \(T(1) \) ...

\[n/2^k = 1 \]
\[n = 2^k \]
\[\lg n = k \]
T(1) = c_2
T(n) = T(n/2^k) + k c_3

T(n) = T(n/2^{\lg n}) + \lg n c_3
= T(1) + c_3 \lg n
= c_2 + c_3 \lg n
\in \Theta(\lg n)
FR-24: Abstract Data Types

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an *interface*
- Data in an ADT cannot be manipulated directly – only through operations defined in the interface
A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

- Add an element to the top of the stack
- Remove the top element
- Check if the stack is empty
FR-26: Stack Implementation

Array:

- Stack elements are stored in an array
- Top of the stack is the *end* of the array
 - If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: data[top++] = elem
- Pop: elem = data[--top]
Stack Implementation

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the *front* of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()
Queue

A Queue is a Last-In, First-Out (FIFO) data structure.

Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty
FR-29: Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list

 - Enqueue: \(\text{tail.setNext(new link(elem,null))} \);
 \(\text{tail = tail.next()} \)

 - Dequeue: \(\text{elem = head.element()} \);
 \(\text{head = head.next()} \)
FR-30: Queue Implementation

Array:

- Store queue elements in a circular array
- Maintain the index of the first element (head) and the next location to be inserted (tail)
 - Enqueue: \(\text{data}[\text{tail}] = \text{elem}; \)
 \[\text{tail} = (\text{tail} + 1) \mod \text{size} \]
 - Dequeue: \(\text{elem} = \text{data}[\text{head}]; \)
 \[\text{head} = (\text{head} + 1) \mod \text{size} \]
Binary Trees are Recursive Data Structures

- Base Case: Empty Tree
- Recursive Case: Node, consisting of:
 - Left Child (Tree)
 - Right Child (Tree)
 - Data
Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)
Tree Terminology

- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node \(n \)
 - Length of path from root to \(n \)
- Height of a tree
 - (Depth of deepest node) + 1
Binary Trees

For each node n, (value stored at node n) > (value stored in left subtree)

For each node n, (value stored at node n) < (value stored in right subtree)
FR-35: Writing a Recursive Algorithm

- Determine a small version of the problem, which can be solved immediately. This is the *base case*.
- Determine how to make the problem smaller.
- Once the problem has been made smaller, we can assume that the function that we are writing *will work correctly on the smaller problem* (Recursive Leap of Faith).
 - Determine how to use the solution to the smaller problem to solve the larger problem.
Finding an Element in a BST

- First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?
 - If the tree is empty, then the element can’t be there
 - If the element is stored at the root, then the element is there
Next, the Recursive Case – how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
 - If the element we are trying to find is $<$ the element stored at the root, use the left subtree. Otherwise, use the right subtree.

How do we use the solution to the subproblem to solve the original problem?
- The solution to the subproblem is the solution to the original problem (this is not always the case in recursive algorithms)
FR-38: **Printing out a BST**

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order
 - Each subproblem is a smaller version of the original problem – we can assume that a recursive call will work!
void print(Node tree) {
 if (tree != null) {
 print(tree.left());
 System.out.println(tree.element());
 print(tree.right());
 }
}

FR-40: Inserting \(e \) into BST \(T \)

- **Base case –** \(T \) is empty:
 - Create a new tree, containing the element \(e \)
- **Recursive Case:**
 - If \(e \) is less than the element at the root of \(T \), insert \(e \) into left subtree
 - If \(e \) is greater than the element at the root of \(T \), insert \(e \) into the right subtree
Inserting e into BST T:

Node insert(Node tree, Comparable elem) {
 if (tree == null) {
 return new Node(elem);
 }
 if (elem.compareTo(tree.element()) < 0) {
 tree.setLeft(insert(tree.left(), elem));
 return tree;
 } else {
 tree.setRight(insert(tree.right(), elem));
 return tree;
 }
}
Removing a leaf:
 • Remove element immediately

Removing a node with one child:
 • Just like removing from a linked list
 • Make parent point to child

Removing a node with two children:
 • Replace node with largest element in left subtree, or the smallest element in the right subtree
FR-43: Priority Queue ADT

Operations

• Add an element / priority pair
• Return (and remove) element with highest priority

Implementation:

• Heap
 Add Element \(O(lg \, n) \)
 Remove Higest Priority \(O(lg \, n) \)
FR-44: Heap Definition

- Complete Binary Tree
- Heap Property
 - For every subtree in a tree, each value in the subtree is \leq value stored at the root of the subtree
FR-45: Heap Examples

Valid Heap
FR-46: Heap Examples

Invalid Heap
FR-47: Heap Insert

- There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree.
- Inserting an element at the “end” of the heap might break the heap property.
 - Swap the inserted value up the tree.
FR-48: Heap Remove Largest

- Removing the Root of the heap is hard
- Removing the element at the “end” of the heap is easy
 - Move last element into root
 - Shift the root down, until heap property is satisfied
Representing Heaps

A Complete Binary Tree can be stored in an array:

```
0 1 2 14 5 3 16 15 7 6 8 9
```

```
1

2

5

7

6

8

9

3

14

16

15

10

11

12

13
```
The root is stored at index 0.

For the node stored at index i:
- Left child is stored at index $2 \times i + 1$.
- Right child is stored at index $2 \times i + 2$.
- Parent is stored at index $\left\lfloor \frac{(i - 1)}{2} \right\rfloor$.
FR-51: **Trees with > 2 children**

How can we implement trees with nodes that have > 2 children?
FR-52: **Trees with > 2 children**

- **Array of Children**
FR-53: Trees with > 2 children

- Linked List of Children
We can integrate the linked lists with the nodes themselves:
Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t know when we’ve hit a null pointer.

Store null pointers, too!

ABD // // E G // // C // F // //
FR-56: Serializing Binary Trees

• In most trees, more null pointers than internal nodes
• Instead of marking null pointers, mark internal nodes
• Still need to mark some nulls, for nodes with 1 child
• Store an “end of children” marker
Main Memory Sorting

- All data elements can be stored in memory at the same time.
- Data stored in an array, indexed from 0...n − 1, where n is the number of elements.
- Each element has a key value (accessed with a `key()` method).
- We can compare keys for <, >, =
- For illustration, we will use arrays of integers – though often keys will be strings, other Comparable types.
FR-59: Stable Sorting

- A sorting algorithm is Stable if the relative order of duplicates is preserved.
- The order of duplicates matters if the keys are duplicated, but the records are not.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>E</td>
<td>A</td>
<td>S</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>d</td>
<td>m</td>
<td>e</td>
<td>l</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>S</td>
<td>E</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>e</td>
<td>d</td>
<td>l</td>
<td>o</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>y</td>
<td>e</td>
<td></td>
<td></td>
<td>b</td>
<td>d</td>
</tr>
</tbody>
</table>

A non-Stable sort
FR-60: Insertion Sort

- Separate list into sorted portion, and unsorted portion
- Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list
 - (A list of one element is always sorted)
- Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted
FR-61: **Bubble Sort**

- Scan list from the last index to index 0, swapping the smallest element to the front of the list
- Scan the list from the last index to index 1, swapping the second smallest element to index 1
- Scan the list from the last index to index 2, swapping the third smallest element to index 2 ...
- Swap the second largest element into position \((n - 2)\)
Selection Sort

- Scan through the list, and find the smallest element
- Swap smallest element into position 0
- Scan through the list, and find the second smallest element
- Swap second smallest element into position 1
- ...
- Scan through the list, and find the second largest element
- Swap smallest largest into position \(n - 2 \)
FR-63: Shell Sort

- Sort $n/2$ sublists of length 2, using insertion sort
- Sort $n/4$ sublists of length 4, using insertion sort
- Sort $n/8$ sublists of length 8, using insertion sort
 ...
- Sort 2 sublists of length $n/2$, using insertion sort
- Sort 1 sublist of length n, using insertion sort
FR-64: Merge Sort

- **Base Case:**
 - A list of length 1 or length 0 is already sorted

- **Recursive Case:**
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7
Quick Sort:

- Divide the list two parts
 - Some work required – Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!
Quick Sort

- Pick a pivot element
- Reorder the list:
 - All elements $< \text{pivot}$
 - Pivot element
 - All elements $> \text{pivot}$
- Recursively sort elements $< \text{pivot}$
- Recursively sort elements $> \text{pivot}$

Example: 3 7 2 8 1 4 6
Comparison Sorting

- Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for $<$, $>$, $=$.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort
All comparison sorting algorithms can be represented by a decision tree with \(n! \) leaves.

Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree.

A decision tree with \(n! \) leaves must have a height of at least \(n \lg n \).

All comparison sorting algorithms have worst-case running time \(\Omega(n \lg n) \).
FR-69: Binsort

- Sort n elements, in the range $1 \ldots m$
- Keep a list of m linked lists
- Insert each element into the appropriate linked lists
- Collect the lists together
FR-70: **Bucket Sort**

- Modify binsort so that each list can hold a range of values
- Need to keep each bucket sorted
FR-71: Counting Sort

```java
for(i=0; i<A.length; i++)
    C[A[i].key()]++;
for(i=1; i<C.length; i++)
    C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}

for (i=0; i<A.length; i++)
    A[i] = B[i];
```
Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc
- Each sort can be done in linear time, using counting sort

- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists
Second Try:

- Sort by *least significant* digit first
- Then sort by next-least significant digit, using a Stable sort

 ...

- Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted.
FR-74: Searching & Selecting

- Maintain a Database (keys and associated data)
- Operations:
 - Add a key / value pair to the database
 - Remove a key (and associated value) from the database
 - Find the value associated with a key
FR-75: **Hash Function**

- What if we had a “magic function” –
 - Takes a key as input
 - Returns the index in the array where the key can be found, if the key is in the array

- To add an element
 - Put the key through the magic function, to get a location
 - Store element in that location

- To find an element
 - Put the key through the magic function, to get a location
 - See if the key is stored in that location
The “magic function” is called a **Hash function**

If \(\text{hash}(\text{key}) = i \), we say that the key hashes to the value \(i \)

We’d like to ensure that different keys will always hash to different values.

Not possible – too many possible keys
FR-77: **Integer Hash Function**

- When two keys hash to the same value, a *collision* occurs.
- We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.
- **Example:** Keys are integers
 - Keys are in range $1 \ldots m$
 - Array indices are in range $1 \ldots n$
 - $n << m$
- $\text{hash}(k) = k \mod n$
String Hash Function

- Hash tables are usually used to store string values.
- If we can convert a string into an integer, we can use the integer hash function.
- How can we convert a string into an integer?
 - Concatenate ASCII digits together.

\[
\sum_{k=0}^{\text{keysize}-1} \text{key}[k] \times 256^{\text{keysize}-k-1}
\]
FR-79: String Hash Function

- Concatenating digits does not work, since numbers get big too fast. Solutions:
 - Overlap digits a little (use base of 32 instead of 256)
 - Ignore early characters (shift them off the left side of the string)

```java
static long hash(String key, int tablesize) {
    long h = 0;
    int i;
    for (i=0; i<key.length(); i++)
        h = (h << 4) + (int) key.charAt(i);
    return h % tablesize;
}
```
For each new character, the hash value is shifted to the left, and the new character is added to the accumulated value.

If the string is long, the early characters will “fall off” the end of the hash value when it is shifted.
- Early characters will not affect the hash value of large strings.

Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and XOR’ed.

Every character will influence the value of the hash function.
Collisions

- When two keys hash to the same value, a collision occurs.
- A collision strategy tells us what to do when a collision occurs.
- Two basic collision strategies:
 - Open Hashing (Closed Addressing, Separate Chaining)
 - Closed Hashing (Open Addressing)
To add element X to a closed hash table:

- Find the smallest i, such that $\text{Array}[\text{hash}(x) + f(i)]$ is empty (wrap around if necessary)
- Add X to $\text{Array}[\text{hash}(x) + f(i)]$
- If $f(i) = i$, linear probing
FR-83: Closed Hashing

- Quadratic probing
 - Find the smallest i, such that $\text{Array}[\text{hash}(x) + f(i)]$ is empty
 - Add X to $\text{Array}[\text{hash}(x) + f(i)]$
 - $f(i) = i^2$
Closed Hashing

- Multiple keys hash to the same element
 - Secondary clustering
- Double Hashing
 - Use a secondary hash function to determine how far ahead to look
 - \(f(i) = i \times \text{hash2(key)} \)
FR-85: Disjoint Sets

- Elements will be integers (for now)
- Operations:
 - `CreateSets(n)` – Create n sets, for integers 0..(n-1)
 - `Union(x,y)` – merge the set containing x and the set containing y
 - `Find(x)` – return a representation of x’s set
 - `Find(x) = Find(y)` iff x,y are in the same set
• Find: (pseudo-Java)

```java
int Find(x) {
    while (Parent[x] > 0)
        x = Parent[x]
    return x
}
```
FR-87: Implementing Disjoint Sets

- Union(x,y) (pseudo-Java)

```java
void Union(x, y) {
    rootx = Find(x);
    rooty = Find(y);
    Parent[rootx] = Parent[rooty];
}
```
When we merge two sets:
- Have the shorter tree point to the taller tree
- Height of taller tree does not change
- If trees have the same height, choose arbitrarily
FR-89: Path Compression

- After each call to `Find(x)`, change x’s parent pointer to point directly at root
- Also, change all parent pointers on path from x to root
Graphs

- A graph consists of:
 - A set of nodes or vertices (terms are interchangeable)
 - A set of edges or arcs (terms are interchangeable)
- Edges in graph can be either directed or undirected
Edges can be labeled or unlabeled

- Edge labels are typically the *cost* associated with an edge
- e.g., Nodes are cities, edges are roads between cities, edge label is the length of road
FR-92: Graph Representations

- Adjacency Matrix
 - Represent a graph with a two-dimensional array G
 - $G[i][j] = 1$ if there is an edge from node i to node j
 - $G[i][j] = 0$ if there is no edge from node i to node j
 - If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
 - $G[i][j] =$ cost of link between i and j
 - If there is no direct link, $G[i][j] = \infty$
Adjacency Matrix

Examples:

```
0 1 2 3
0 0 1 0 1
1 1 0 1 1
2 0 1 0 0
3 1 1 0 0
```
FR-94: Adjacency Matrix

- Examples:

```
0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 0 0 0
3 1 0 0 0
```
• Adjacency List
• Maintain a linked-list of the neighbors of every vertex.
 • n vertices
 • Array of n lists, one per vertex
 • Each list i contains a list of all vertices adjacent to i.

Adjacency List

Examples:

0 1 2 3

Diagram:

- 0 is connected to 1 and 3
- 1 is connected to 0 and 2
- 2 is connected to 0 and 3
- 3 is connected to 0 and 1

Diagram representation of adjacency list:

- Node 0 connected to 1 and 3
- Node 1 connected to 0 and 2
- Node 2 connected to 0 and 3
- Node 3 connected to 0 and 1
FR-97: Adjacency List

- **Examples:**

- **Note** – lists are not always sorted
Topological Sort

- Directed Acyclic Graph, Vertices $v_1 \ldots v_n$
- Create an ordering of the vertices
 - If there a path from v_i to v_j, then v_i appears before v_j in the ordering
- Example: Prerequisite chains
FR-99: Topological Sort

- Pick a node v_k with no incident edges
- Add v_k to the ordering
- Remove v_k and all edges from v_k from the graph
- Repeat until all nodes are picked.
FR-100: Graph Traversals

- Visit every vertex, in an order defined by the topology of the graph.
- Two major traversals:
 - Depth First Search
 - Breadth First Search
Starting from a specific node (pseudo-code):

```java
DFS(Edge G[], int vertex, boolean Visited[]) {
    Visited[vertex] = true;
    for each node w adjacent to vertex:
        if (!Visited[w])
            DFS(G, w, Visited);
}
```
class Edge {
 public int neighbor;
 public int next;
}

void DFS(Edge G[], int vertex, boolean Visited[])
{
 Edge tmp;
 Visited[vertex] = true;
 for (tmp = G[vertex]; tmp != null; tmp = tmp.next)
 {
 if (!Visited[tmp.neighbor])
 {
 if (!Visited[tmp.neighbor])
 {
 DFS(G, tmp.neighbor, Visited);
 }
 }
 }
}
FR-103: Breadth First Search

- **DFS:** Look as *Deep* as possible, before looking wide
 - Examine all descendants of a node, before looking at siblings

- **BFS:** Look as *Wide* as possible, before looking deep
 - Visit all nodes 1 away, then 2 away, then three away, and so on
FR-104: Search Trees

• Describes the order that nodes are examined in a traversal

• Directed Tree
 • Directed edge from \(v_1 \) to \(v_2 \) if the edge \((v_1, v_2)\) was followed during the traversal
Given a directed weighted graph G (all weights non-negative) and two vertices x and y, find the least-cost path from x to y in G.

- Undirected graph is a special case of a directed graph, with symmetric edges.

- Least-cost path may not be the path containing the fewest edges.
 - “shortest path” == “least cost path”
 - “path containing fewest edges” = “path containing fewest edges”
FR-106: Single Source Shortest Path

- If all edges have unit weight,
- We can use Breadth First Search to compute the shortest path
- BFS Spanning Tree contains shortest path to each node in the graph
 - Need to do some more work to create & save BFS spanning tree
- When edges have differing weights, this obviously will not work
Divide the vertices into two sets:
- Vertices whose shortest path from the initial vertex is known
- Vertices whose shortest path from the initial vertex is not known
Initially, only the initial vertex is known
Move vertices one at a time from the unknown set to the known set, until all vertices are known
FR-108: Dijkstra’s Algorithm

• Keep a table that contains, for each vertex
 • Is the distance to that vertex known?
 • What is the best distance we’ve found so far?

• Repeat:
 • Pick the smallest unknown distance
 • mark it as known
 • update the distance of all unknown neighbors of that node

• Until all vertices are known
FR-109: Floyd’s Algorithm

- Vertices numbered from 1..n
- k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices numbered k or less
- 0-path is a direct link
Floyd’s Algorithm

- Shortest n-path = Shortest path
- Shortest 0-path:
 - ∞ if there is no direct link
 - Cost of the direct link, otherwise
- If we could use the shortest k-path to find the shortest $(k+1)$ path, we would be set
FR-111: Floyd’s Algorithm

• Shortest k-path from v to u either goes through vertex k, or it does not

• If not:
 • Shortest k-path = shortest $(k - 1)$-path

• If so:
 • Shortest k-path = shortest $k - 1$ path from v to k, followed by the shortest $k - 1$ path from k to w
If we had the shortest k-path for all pairs (v, w), we could obtain the shortest $k + 1$-path for all pairs:

- For each pair v, w, compare:
 - length of the k-path from v to w
 - length of the k-path from v to k appended to the k-path from k to w

- Set the $k + 1$ path from v to w to be the minimum of the two paths above
FR-113: Floyd’s Algorithm

- Let $D_k[v, w]$ be the length of the shortest k-path from v to w.
- $D_0[v, w] = \text{cost of arc from } v \text{ to } w$ (∞ if no direct link)
- $D_k[v, w] = \text{MIN}(D_{k-1}[v, w], D_{k-1}[v, k] + D_{k-1}[k, w])$
- Create D_0, use D_0 to create D_1, use D_1 to create D_2, and so on – until we have D_n
Given a connected, undirected graph G

 - A *subgraph* of G contains a subset of the vertices and edges in G

 - A *Spanning Tree* T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic
FR-115: Spanning Tree Examples

- Graph
Spanning Tree Examples

- Spanning Tree
FR-117: **Minimal Cost Spanning Tree**

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree
FR-118: Kruskal’s Algorithm

- Start with an empty graph (no edges)
- Sort the edges by cost
- For each edge e (in increasing order of cost)
 - Add e to G if it would not cause a cycle
FR-119: Kruskal’s Algorithm

- We need to:
 - Put each vertex in its own tree
 - Given any two vertices \(v_1 \) and \(v_2 \), determine if they are in the same tree
 - Given any two vertices \(v_1 \) and \(v_2 \), merge the tree containing \(v_1 \) and the tree containing \(v_2 \)
- ... sound familiar?
Kruskal’s Algorithm

- Disjoint sets!
- Create a list of all edges
- Sort list of edges
- For each edge $e = (v_1, v_2)$ in the list
 - if $\text{FIND}(v_1) \neq \text{FIND}(v_2)$
 - Add e to spanning tree
 - $\text{UNION}(v_1, v_2)$
FR-121: Prim’s Algorithm

- Grow that spanning tree out from an initial vertex
- Divide the graph into two sets of vertices
 - vertices in the spanning tree
 - vertices not in the spanning tree
- Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 - Pick the initial vertex arbitrarily
Prim’s Algorithm

• While there are vertices not in the spanning tree
 • Add the cheapest vertex to the spanning tree
FR-123: Indexing

• Operations:
 • Add an element
 • Remove an element
 • Find an element, using a key
 • Find all elements in a range of key values
FR-124: 2-3 Trees

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth
How can we find an element in a 2-3 tree?
- If the tree is empty, return false
- If the element is stored at the root, return true
- Otherwise, recursively find in the appropriate subtree
FR-126: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!
To split a node in a 2-3 tree that has 3 elements:

- Split nodes into two nodes
 - One node contains the smallest element
 - Other node contains the largest element
- Add median element to parent
 - Parent can then handle the extra pointer
Inserting elements 1-9 (in order) into a 2-3 tree
Inserting elements 1-9 (in order) into a 2-3 tree
FR-130: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
1 2 3
```

Too many keys, need to split
Inserting elements 1-9 (in order) into a 2-3 tree
FR-132: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree
Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys, need to split
FR-134: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree
FR-135: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree
Inserting elements 1-9 (in order) into a 2-3 tree
FR-137: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

Too many keys need to split
2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree
• Inserting elements 1-9 (in order) into a 2-3 tree
FR-140: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
        4
       /|
      / |\  
     2  5 6
    /  \
   1 3 7
  /  \
 5 8
```

Too many keys need to split
FR-141: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
   4
  / \
 2   6
/ \ / \ / \
1  3 5 7 8 9
```
FR-142: Deleting Leaves

- If leaf contains 2 keys
 - Can safely remove a key
FR-143: Deleting Leaves

- Deleting 7
FR-144: Deleting Leaves

- Deleting 7
FR-145: Deleting Leaves

- If leaf contains 1 key
 - Cannot remove key without making leaf empty
 - Try to steal extra key from sibling
FR-146: Deleting Leaves

- Steal key from sibling *through parent*
FR-147: Deleting Leaves

- Steal key from sibling *through parent*
FR-148: Deleting Leaves

- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse
FR-149: Merging Nodes

- Removing the 4
• Removing the 4
• Combine 5, 7 into one node
FR-151: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
 - Replace key with smallest element subtree to right of key
 - Recursively delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)
FR-152: Deleting Interior Keys

- Deleting the 4
Deleting the 4
Replace 4 with smallest element in tree to right of 4
FR-154: Deleting Interior Keys
FR-155: Deleting Interior Keys

- Deleting the 5
FR-156: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
FR-157: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys
FR-158: Deleting Interior Keys

- Node with two few keys
- Steal a key from a sibling
FR-159: Deleting Interior Keys
FR-160: Deleting Interior Keys

- Removing the 6
- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6
FR-162: Deleting Interior Keys

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling
Deleting Interior Keys

- Node with too few keys
 - Can’t steal key from sibling
 - Merge with sibling
 - (arbitrarily pick right sibling to merge with)
FR-164: Deleting Interior Keys

```
1  7  12
 
2
  
3

8  9

10 11

13
```
In 2-3 Trees:
- Each node has 1 or 2 keys
- Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node
A B-Tree of maximum degree k:
- All interior nodes have $\lceil k/2 \rceil \ldots k$ children
- All nodes have $\lceil k/2 \rceil - 1 \ldots k - 1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3
B-Trees

- B-Tree with maximum degree 5
 - Interior nodes have 3 – 5 children
 - All nodes have 2-4 keys
FR-168: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.
FR-169: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.
FR-170: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.
FR-171: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.
We can keep track of the order in which we visit the elements in a Depth-First Search.

For any vertex \(v \) in a DFS:

1. \(d[v] = \text{Discovery time} \) – when the vertex is first visited
2. \(f[v] = \text{Finishing time} \) – when we have finished with a vertex (and all of its children)
class Edge {
 public int neighbor;
 public int next;
}

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
 Edge tmp;
 Visited[vertex] = true;
 d[vertex] = time++;
 for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
 if (!Visited[tmp.neighbor])
 DFS(G, tmp.neighbor, Visited);
 }
 f[vertex] = time++;
}
FR-174: DFS Example
FR-175: DFS Example

1 → 2 → 4 → 6 → 8

2 → 3

3 → 5

5 → 6

6 → 8

7 → 8
FR-176: DFS Example
FR-177: DFS Example

Diagram:

- Nodes: 1, 2, 3, 4, 5, 6, 7, 8
- Edges:
 - 1 -> 2
 - 2 -> 4
 - 3 -> 4
 - 4 <-> 6
 - 5 -> 4
 - 5 <-> 6
 - 7 -> 8

Labels:
- d1, d2, d3, d4, d5, d6, d7, d8
- f1, f2, f3, f4, f5, f6, f7, f8
FR-178: DFS Example

Diagram showing a depth-first search example with nodes labeled 1, 2, 3, 4, 5, 6, 7, and 8. The diagram illustrates the order in which nodes are visited during a depth-first search.
FR-179: DFS Example
FR-181: DFS Example

1 → 2
1 → 3
1 → 4
1 → 5
1 → 6
1 → 7
1 → 8

2 → 1
2 → 4
2 → 5
2 → 6
2 → 7
2 → 8

3 → 1
3 → 4
3 → 5
3 → 6
3 → 7
3 → 8

4 → 1
4 → 2
4 → 3
4 → 5
4 → 6
4 → 7
4 → 8

5 → 1
5 → 2
5 → 3
5 → 4
5 → 6
5 → 7
5 → 8

6 → 1
6 → 2
6 → 3
6 → 4
6 → 5
6 → 7
6 → 8

7 → 1
7 → 2
7 → 3
7 → 4
7 → 5
7 → 6
7 → 8

8 → 1
8 → 2
8 → 3
8 → 4
8 → 5
8 → 6
8 → 7

dfs
dfs
dfs
dfs
dfs
dfs
dfs
dfs

d1
f
d3
f
d5
f
d7
f
d2
f
d4
f
d6
f

d2
f
d4
f
d5
f

FR-182: DFS Example

```
1 ----> 2    3 ----> 4
  |
  |
  |
5 ----> 6    7 ----> 8
  |
  |
  |
```

- d1
- d2
- d3
- d4
- d5
- d7
- d8

f1
f2
f3
f4
f5
f6
f7
f8
FR-183: DFS Example
FR-184: DFS Example
FR-185: DFS Example

d 1 f 10
d 3 f 8
d f
d f

d 2 f 9
d 4 f 7
d 5 f 6

d 7
FR-186: DFS Example

d 1
f 10

1

2

d 2
f 9

d 3
f 8

3

4

d 4
f 7

d 11
f 5
f 6

5

6

7

d
f

8
FR-187: DFS Example

d 1
f 10

1

2

d 2
f 9

d 3
f 8

3

4

d 4
f 7

5

6

d 5
f 6

7

8

d 11
f

d 12
f
FR-188: DFS Example

Diagram with nodes labeled as follows:
- Node 1: d1, f10
- Node 2: d2, f9
- Node 3: d3, f8
- Node 4: d4, f7
- Node 5: d11, f
- Node 6: d5, f6
- Node 7: d12, f13
- Node 8: d, f
FR-189: DFS Example
FR-190: DFS Example

d 1 f 10
d 3 f 8
d 11 f
d 12 f 13

1
2
3
4
5
6
7
8

d 2 f 9
d 4 f 7
d 5 f 6
d 14 f 15
FR-191: DFS Example

1 → 2 → 4 ← 5 ← 6 → 8
3 ← 4 → 5 ← 6 ← 8
7 → 8
Given two vertices v_1 and v_2, what do we know if $f[v_2] < f[v_1]$?

Either:

- Path from v_1 to v_2
 - Start from v_1
 - Eventually visit v_2
 - Finish v_2
 - Finish v_1
Given two vertices v_1 and v_2, what do we know if $f[v_2] < f[v_1]$?

Either:

- Path from v_1 to v_2
- No path from v_2 to v_1
 - Start from v_2
 - Eventually finish v_2
 - Start from v_1
 - Eventually finish v_1
• If $f[v_2] < f[v_1]$:
 • Either a path from v_1 to v_2, or no path from v_2 to v_1
 • If there is a path from v_2 to v_1, then there must be a path from v_1 to v_2

• $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component
FR-195: Connected Components

- Run DFS on G, calculating $f[]$ times
- Compute G^T
- Run DFS on G^T – examining nodes in *inverse order of finishing times* from first DFS
- Any nodes that are in the same DFS search tree in G^T must be in the same connected component
FR-196: **Dynamic Programming**

- Simple, recursive solution to a problem
- Naive solution recalculates same value many times
- Leads to exponential running time
Recalculating values can lead to unacceptable run times

- Even if the total number of values that needs to be calculated is small

Solution: Don’t recalculate values

- Calculate each value once
- Store results in a table
- Use the table to calculate larger results
int Fibonacci(int n) {

 int[] FIB = new int[n+1];

 FIB[0] = 1;
 FIB[1] = 1;

 for (i=2; i<=n; i++)
 FIB[i] = FIB[i-1] + FIB[i-2];

 return FIB[n];
}
FR-199: Dynamic Programming

- To create a dynamic programming solution to a problem:
 - Create a simple recursive solution (that may require a large number of repeat calculations)
 - Design a table to hold partial results
 - Fill the table such that whenever a partial result is needed, it is already in the table
Memoization

• Can be difficult to determine order to fill the table
• We can use a table together with recursive solution
 • Initialize table with sentinel value
 • In recursive function:
 • Check table – if entry is there, use it
 • Otherwise, call function recursively
 Set appropriate table value
 return table value
int Fibonacci(int n) {
 if (n == 0)
 return 1;

 if (n == 1)
 return 1;

 if (T[n] == -1)
 T[n] = Fibonacci(n-1) + Fibonacci(n-2);

 return T[n];
}
Hard Problems

- Some algorithms take exponential time
 - Simple version of Fibonacci
 - Faster versions of Fibonacci that take linear time
- Some *Problems* take exponential time
 - *All* algorithms that solve the problem take exponential time
 - Towers of Hanoi
A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2.

- Given an instance of Problem 1, create an instance of Problem 2.
- Solve the instance of Problem 2.
- Use the solution of Problem 2 to create a solution to Problem 1.
FR-204: Reductions

- We can use a Reduction to compare problems.
- If there is a reduction from problem \(A \) to problem \(B \) that can be done quickly.
- Problem \(B \) is known to be hard (cannot be solved quickly).
- Problem \(A \) cannot be solved quickly, either.
A problem is NP if a solution can be verified easily

- **Traveling Salesman Problem (TSP)**
 - Given a graph with weighted vertices, and a cost bound k
 - Is there a cycle that contains all vertices in the graph, that has a total cost less than k?

- Given any potential solution to the TSP, we can easily verify that the solution is correct.
Two Definitions of Non-Deterministic Machines:

- “Oracle” – allows machine to magically make a correct guess
- Massively parallel – simultaneously try to verify all possible solutions
 - Try all permutations of vertices in a graph, see if any form a cycle with cost $< k$
 - Try all colorings of a graph with up to k colors, see if any are legal
 - Try all permutations of a list, see if any are sorted
A problem is NP if a non-deterministic machine can solve it in polynomial time
 • Of course, we have no real non-deterministic machines

A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
 • Sorting is in P – can sort a list in polynomial time
 • All problems in P are also in NP
 • Ignore the oracle
An NP problem is “NP-Complete” if there is a reduction from any NP problem to that problem.

For example, Traveling Salesman (TSP) is NP-Complete.

- We can reduce any NP problem to TSP.
- If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time.

TSP is not unique – many NP-Complete problems.
If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly.

If that is the case, then NP=P

P is set of problems that can be solved by a standard machine in polynomial time.

Most everyone believes that NP \neq P, and all NP-Complete problems require exponential time on standard computers – not yet been proven.
What can we do, if we need to solve a problem that is NP-Complete?

- If the problem we need to solve is very small (< 20), an exponential solution might be OK.
- We can solve an *approximation* of the problem:
 - Color a graph using an non-optimal number of colors.
 - Find a Traveling Salesman tour that is not optimal.
Some problems are “easy” – require a fairly small amount of time to solve
 • Sorting
Some problems are “probably hard” – believed to require exponential time to solve
 • TSP, Graph Coloring, etc
Some problems are “hard” – known to require an exponential amount of time to solve
 • Towers of Hanoi
Some problems are impossible – cannot be solved
Program is running – seems to be taking a long time

We’d like to know if the program will eventually finish, or if it is in an infinite loop

Great debugging tool:
- Takes as input the source code to a program p, and an input i
- Determines if p will run forever when run on i

No such tool can exist!
boolean halt(char [] program, char [] input) {

 /* code to determine if the program halts when run on the input */

 if (program halts on input)
 return true;
 else
 return false;
}

boolean selfhalt(char [] program) {
 if (halt(program, program))
 return true;
 else
 return false;
}

void contrary(char [] program) {
 if (selfhalt(program)
 while(true); /* infinite loop */
}

• what happens when we call contrary, passing in its own source code as input?
Binomial Trees

• B_0 is a tree containing a single node
• To build B_k:
 • Start with B_{k-1}
 • Add B_{k-1} as left subtree
FR-216: Binomial Trees
FR-217: **Binomial Trees**
FR-218: Binomial Trees

- Equivalent definition
 - B_0 is a binomial heap with a single node
 - B_k is a binomial heap with k children:
 - $B_0 \ldots B_{k-1}$
Binomial Trees
FR-220: Binomial Trees

B_0 B_1 B_2 B_3 B_4
A Binomial Heap is:
- Set of binomial trees, each of which has the heap property
 - Each node in every tree is \leq all of its children
- All trees in the set have a different root degree
 - Can’t have two B_3’s, for instance
FR-222: Binomial Heaps

The diagram depicts a binomial heap structure with nodes labeled with numbers. The heap is formed by connecting nodes in a way that each node's value is less than or equal to the value of its parent. The specific structure shown includes nodes labeled 10, 5, 22, 7, 25, 8, 12, 9, 15, 13, 15, and 20.
Representing Binomial Heaps

- Each node contains:
 - left child, right sibling, parent pointers
 - degree (is the tree rooted at this node \(B_0 \), \(B_1 \), etc.)
 - data
- Each list of children sorted by degree
FR-224: Binomial Heaps

Head

10
2
1
0

5
2
1
0

8
3
1
0

22
7
15
0

12
2
9
1

13
15
20
1

25
17
1
0

10
5
8
22
12
13
25
17

5
2
8
3
15
How can we find the minimum element in a binomial heap?
- Look at the root of each tree in the list, find smallest value

How long does it take?
- Heap has n elements
- Represent n as a binary number
- B_k is in heap iff kth binary digit of n is 1
- Number of trees in heap $\in O(lg n)$
Merging Heaps H_1 and H_2

- Merge root lists of H_1 and H_2
 - Could now have two trees with same degree
- Go through list from smallest degree to largest degree
 - If two trees have same degree, combine them into one tree of larger degree
 - If three trees have same degree (how can this happen?) leave one, combine other two into tree of larger degree
FR-227: Binomial Heaps
FR-228: Binomial Heaps

10 11

14 6

22 7

25 30

8 12 9 15

13 15 20

17
FR-229: Binomial Heaps

```
     10
    /  \
  11   22  7
    |    |   |
   25   14  6
          |   |
       30   12
              |
           13
```

8

9 15

20

17
FR-230: Binomial Heaps
FR-231: Binomial Heaps

```
10
11

12
9
15
22
7
30

13
15
20
25

17
```
FR-232: Binomial Heaps

- Removing minimum element
 - Find tree T that has minimum value at root, remove T from the list
 - Remove the root of T
 - Leaving a list of smaller trees
 - Reverse list of smaller trees
 - Merge two lists of trees together
FR-233: Binomial Heaps

- Removing minimum element
FR-234: Binomial Heaps

• Removing minimum element
FR-235: **Binomial Heaps**

- **Removing minimum element**

```
10
  11
  30 22 7
  25
```

```
14
  25
```

```
5
```

```
8
  12
  13
  17
```

```
15
```

```
9
```

```
15
```

```
20
```
FR-236: Binomial Heaps

- Removing minimum element
FR-237: Binomial Heaps

- Removing minimum element
FR-238: **Binomial Heaps**

- Removing minimum element

```
6
```

```
10  14  11  13
22  25  15  15
7
```

```
5
```

```
12  8
9
```

```
15
```

```
30
```

```
17
```
FR-239: Binomial Heaps

- Removing minimum element

```
6
   8  5
  12 9 15 14 10 22 7
  13 15 20 30 11 25
  17
```
FR-240: Binomial Heaps

- Removing minimum element
 - Time?
 - Find the smallest element: $O(\log n)$
 - Reverse list of children $O(\log n)$
 - Merge heaps $O(\log n)$