FR-0: **Big-Oh Notation**

\(O(f(n)) \) is the set of all functions that are bound from above by \(f(n) \)

\[T(n) \in O(f(n)) \text{ if } \exists c, n_0 \text{ such that } T(n) \leq c \cdot f(n) \text{ when } n > n_0 \]

FR-1: **Big-Oh Examples**

\(n \in O(n) \)?
\(10n \in O(n) \)?
\(n \in O(10n) \)?
\(n \in O(n^2) \)?
\(n^2 \in O(n) \)?
\(10n^2 \in O(n^2) \)?
\(n \log n \in O(n^2) \)?
\(\log n \in O(2n) \)?
\(\log n \in O(n) \)?
\(3n + 4 \in O(n) \)?
\(5n^2 + 10n - 2 \in O(n^3), O(n^2), O(n) \)?

FR-2: **Big-Oh Examples**

\(n \in O(n) \)
\(10n \in O(n) \)
\(n \in O(10n) \)
\(n \in O(n^2) \)
\(n^2 \notin O(n) \)
\(10n^2 \in O(n^2) \)
\(n \log n \in O(n^2) \)
\(\log n \in O(2n) \)
\(\log n \in O(n) \)
\(3n + 4 \in O(n) \)
\(5n^2 + 10n - 2 \in O(n^3), \notin O(n^2), \notin O(n) \)?

FR-3: **Big-Oh Examples II**

\(\sqrt{n} \in O(n) \)?
\(\log n \in O(2^n) \)?
\(\log n \in O(n) \)?
\(n \log n \in O(n) \)?
\(n \log n \in O(n^2) \)?
\(\sqrt{n} \in O(\log n) \)?
\(\log n \in O(\sqrt{n}) \)?
\(n \log n \in O(n^{\frac{3}{2}}) \)?
\(n^3 + n \log n + n \sqrt{n} \in O(n \log n) \)?
\(n^3 + n \log n + n \sqrt{n} \in O(n^3) \)?
\(n^3 + n \log n + n \sqrt{n} \in O(n^4) \)?

FR-4: **Big-Oh Examples II**
\[
\sqrt{n} \in O(n)
\]
\[
\lg n \in O(2^n)
\]
\[
\lg n \in O(n)
\]
\[- n \lg n \notin O(n) \]
\[- n \lg n \in O(n^2) \]
\[- \sqrt{n} \notin O(\lg n) \]
\[- \lg n \in O(\sqrt{n}) \]
\[- n \lg n \in O(n^2) \]
\[- n^3 + n \lg n + n\sqrt{n} \notin O(n \lg n) \]
\[- n^3 + n \lg n + n\sqrt{n} \in O(n^3) \]
\[- n^3 + n \lg n + n\sqrt{n} \in O(n^4) \]

FR-5: Big-Oh Examples III

\[
f(n) = \begin{cases}
 n & \text{for } n \text{ odd} \\
 n^3 & \text{for } n \text{ even}
\end{cases}
\]
\[
g(n) = n^2
\]

\[
f(n) \in O(g(n)) ?
\]
\[
g(n) \in O(f(n)) ?
\]
\[
n \in O(f(n)) ?
\]
\[
f(n) \in O(n^3) ?
\]

FR-6: Big-Oh Examples III

\[
T(n) \in \Omega(f(n))
\]

\[
\exists c, n_0 \text{ such that } T(n) \geq c * f(n) \text{ when } n > n_0
\]

FR-7: Big-Ω Notation $\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$

\[
T(n) \in \Omega(f(n)) \text{ if }
\]

\[
\exists c, n_0 \text{ such that } T(n) \geq c * f(n) \text{ when } n > n_0
\]

FR-8: Big-Ω Notation $\Omega(f(n))$ is the set of all functions that are bound from below by $f(n)$

\[
T(n) \in \Omega(f(n)) \text{ if }
\]

\[
\exists c, n_0 \text{ such that } T(n) \geq c * f(n) \text{ when } n > n_0
\]

\[
f(n) \in O(g(n)) \Rightarrow g(n) \in \Omega(f(n))
\]

FR-9: Big-Θ Notation $\Theta(f(n))$ is the set of all functions that are bound both above and below by $f(n)$. Θ is a tight bound

\[
T(n) \in \Theta(f(n)) \text{ if }
\]
\[T(n) \in O(f(n)) \text{ and } T(n) \in \Omega(f(n)) \]

\section*{FR-10: Big-Oh Rules}

1. If \(f(n) \in O(g(n)) \) and \(g(n) \in O(h(n)) \), then \(f(n) \in O(h(n)) \)
2. If \(f(n) \in O(kg(n)) \) for any constant \(k > 0 \), then \(f(n) \in O(g(n)) \)
3. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n))) \)
4. If \(f_1(n) \in O(g_1(n)) \) and \(f_2(n) \in O(g_2(n)) \), then \(f_1(n) \cdot f_2(n) \in O(g_1(n) \cdot g_2(n)) \)

(Also work for \(\Omega \), and hence \(\Theta \))

\section*{FR-11: Big-Oh Guidelines}

- Don’t include constants/low order terms in Big-Oh
- Simple statements: \(\Theta(1) \)
- Loops: \(\Theta(\text{inside}) \cdot \# \text{ of iterations} \)
 - Nested loops work the same way
- Consecutive statements: Longest Statement
- Conditional (if) statements:
 \(O(\text{Test + longest branch}) \)

\section*{FR-12: Calculating Big-Oh}

```c
for (i=1; i<n; i++)
    for (j=1; j < n/2; j++)
        sum++;
```

\section*{FR-13: Calculating Big-Oh}

```c
for (i=1; i<n; i++)
    for (j=1; j < n/2; j++)
        sum++;
```

\textbf{Executed n times}
- \(\text{Sum}: O(1) \)

\textbf{Running time:} \(O(n^2), \Omega(n^2), \Theta(n^2) \)

\section*{FR-14: Calculating Big-Oh}

```c
for (i=1; i<n; i=i*2)
    sum++;
```

\section*{FR-15: Calculating Big-Oh}

```c
for (i=1; i<n; i=i*2)
    sum++;
```

\textbf{Executed \(\log n \) times}
- \(\text{Sum}: O(1) \)

\textbf{Running Time:} \(O(\log n), \Omega(\log n), \Theta(\log n) \)

\section*{FR-16: Calculating Big-Oh}
for (i=1; i<n; i=i*2)
 for (j=0; j < n; j = j + 1)
 sum++;
for (i=n; i >1; i = i / 2)
 for (j = 1; j < n; j = j * 2)
 for (k = 1; k < n; k = k * 3)
 sum++

FR-17: **Recurrence Relations**

\[T(n) = \text{Time required to solve a problem of size } n \]

Recurrence relations are used to determine the running time of recursive programs – recurrence relations themselves are recursive

\[T(0) = \text{time to solve problem of size 0} \]

- Base Case

\[T(n) = \text{time to solve problem of size } n \]

- Recursive Case

FR-18: **Recurrence Relations**

```c
long power(long x, long n) {
    if (n == 0)
        return 1;
    else
        return x * power(x, n-1);
}
```

\[T(0) = c_1 \quad \text{for some constant } c_1 \]

\[T(n) = c_2 + T(n-1) \quad \text{for some constant } c_2 \]

FR-19: **Building a Better Power**

```c
long power(long x, long n) {
    if (n==0) return 1;
    if (n==1) return x;
    if ((n % 2) == 0)
        return power(x*x, n/2);
    else
        return power(x*x, n/2) * x;
}
```

FR-20: **Building a Better Power**

```c
long power(long x, long n) {
    if (n==0) return 1;
    if (n==1) return x;
    if ((n % 2) == 0)
        return power(x*x, n/2);
    else
        return power(x*x, n/2) * x;
}
```

\[T(0) = c_1 \]

\[T(1) = c_2 \]

\[T(n) = T(n/2) + c_3 \]
(Assume \(n \) is a power of 2) FR-21: **Solving Recurrence Relations**

\[
T(n) = T(n/2) + c_3 \\
= T(n/4) + c_3 + c_3 \\
= T(n/4)2c_3 \\
= T(n/8) + c_3 + 2c_3 \\
= T(n/8)3c_3 \\
= T(n/16) + c_3 + 3c_3 \\
= T(n/16) + 4c_3 \\
= T(n/32) + c_3 + 4c_3 \\
= T(n/32) + 5c_3 \\
= \ldots \\
= T(n/2^k) + kc_3
\]

\[
T(0) = c_1 \\
T(1) = c_2 \\
T(n) = T(n/2) + c_3 \\
T(n) = T(n/2^k) + kc_3
\]

We want to get rid of \(T(n/2^k) \). Since we know \(T(1) \) ...

\[
n/2^k = 1 \\
n = 2^k \\
lg n = k
\]

FR-22: **Solving Recurrence Relations**

\[
T(1) = c_2 \\
T(n) = T(n/2^k) + kc_3
\]

\[
T(n) = T(n/2^{\lg n}) + \lg nc_3 \\
= T(1) + c_3 \lg n \\
= c_2 + c_3 \lg n \\
\in \Theta(\lg n)
\]

FR-23: **Solving Recurrence Relations**

\[
T(1) = c_2 \\
T(n) = T(n/2^k) + kc_3
\]

FR-24: **Abstract Data Types**

- An Abstract Data Type is a definition of a type based on the operations that can be performed on it.
- An ADT is an *interface*
- Data in an ADT cannot be manipulated directly – only through operations defined in the interface

FR-25: **Stack**

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

- Add an element to the top of the stack
- Remove the top element
Check if the stack is empty

FR-26: Stack Implementation

Array:

- Stack elements are stored in an array
- Top of the stack is the *end* of the array
 - If the top of the stack was the beginning of the array, a push or pop would require moving all elements in the array
- Push: data[top++] = elem
- Pop: elem = data[--top]

FR-27: Stack Implementation

Linked List:

- Stack elements are stored in a linked list
- Top of the stack is the *front* of the linked list
- push: top = new Link(elem, top)
- pop: elem = top.element(); top = top.next()

FR-28: Queue

A Queue is a Last-In, First-Out (FIFO) data structure.

Queue Operations:

- Add an element to the end (tail) of the Queue
- Remove an element from the front (head) of the Queue
- Check if the Queue is empty

FR-29: Queue Implementation

Linked List:

- Maintain a pointer to the first and last element in the Linked List
- Add elements to the back of the Linked List
- Remove elements from the front of the linked list
 - Enqueue: tail.setNext(new link(elem,null));
 tail = tail.next()
 - Dequeue: elem = head.element();
 head = head.next();

FR-30: Queue Implementation

Array:

- Store queue elements in a circular array
• Maintain the index of the first element (head) and the next location to be inserted (tail)
 • Enqueue: \(\text{data[tail]} = \text{elem}; \)
 \(\text{tail} = \text{(tail + 1) \% size} \)
 • Dequeue: \(\text{elem} = \text{data[head]}; \)
 \(\text{head} = \text{(head + 1) \% size} \)

FR-31: **Binary Trees**

Binary Trees are Recursive Data Structures

• Base Case: Empty Tree

• Recursive Case: Node, consisting of:
 • Left Child (Tree)
 • Right Child (Tree)
 • Data

FR-32: **Binary Tree Examples**

The following are all Binary Trees (Though not Binary Search Trees)

FR-33: **Tree Terminology**

• Parent / Child
• Leaf node
• Root node
• Edge (between nodes)
• Path
• Ancestor / Descendant
• Depth of a node \(n \)
 • Length of path from root to \(n \)
• Height of a tree
• (Depth of deepest node) + 1

FR-34: **Binary Search Trees**

• Binary Trees
 • For each node n, (value stored at node n) > (value stored in left subtree)
 • For each node n, (value stored at node n) < (value stored in right subtree)

FR-35: **Writing a Recursive Algorithm**

• Determine a small version of the problem, which can be solved immediately. This is the *base case*
• Determine how to make the problem smaller
• Once the problem has been made smaller, we can assume that the function that we are writing *will work correctly on the smaller problem* (Recursive Leap of Faith)
 • Determine how to use the solution to the smaller problem to solve the larger problem

FR-36: **Finding an Element in a BST**

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?
 • If the tree is empty, then the element can’t be there
 • If the element is stored at the root, then the element is there

FR-37: **Finding an Element in a BST**

• Next, the Recursive Case – how do we make the problem smaller?
 • Both the left and right subtrees are smaller versions of the problem. Which one do we use?
 • If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.
 • How do we use the solution to the subproblem to solve the original problem?
 • The solution to the subproblem *is* the solution to the original problem (this is not always the case in recursive algorithms)

FR-38: **Printing out a BST**

To print out all element in a BST:

• Print all elements in the left subtree, in order
• Print out the element at the root of the tree
• Print all elements in the right subtree, in order
 • Each subproblem is a smaller version of the original problem – we can assume that a recursive call will work!

FR-39: **Printing out a BST**
void print(Node tree) {
 if (tree != null) {
 print(tree.left());
 System.out.println(tree.element());
 print(tree.right());
 }
}

FR-40: **Inserting** \(e \) **into** BST \(T \)

- **Base case** – \(T \) is empty:
 - Create a new tree, containing the element \(e \)
- **Recursive Case**:
 - If \(e \) is less than the element at the root of \(T \), insert \(e \) into left subtree
 - If \(e \) is greater than the element at the root of \(T \), insert \(e \) into the right subtree

FR-41: **Inserting** \(e \) **into** BST \(T \)

```java
Node insert(Node tree, Comparable elem) {
    if (tree == null) {
        return new Node(elem);
    }
    if (elem.compareTo(tree.element()) < 0) {
        tree.setLeft(insert(tree.left(), elem));
        return tree;
    } else {
        tree.setRight(insert(tree.right(), elem));
        return tree;
    }
}
```

FR-42: **Deleting From a BST**

- Removing a leaf:
 - Remove element immediately
- Removing a node with one child:
 - Just like removing from a linked list
 - Make parent point to child
- Removing a node with two children:
 - Replace node with largest element in left subtree, or the smallest element in the right subtree

FR-43: **Priority Queue ADT**

Operations

- Add an element / priority pair
- Return (and remove) element with highest priority
Implementation:

- Heap
 - Add Element $O(\lg n)$
 - Remove Higest Priority $O(\lg n)$

FR-44: **Heap Definition**

- Complete Binary Tree
- Heap Property
 - For every subtree in a tree, each value in the subtree is \geq value stored at the root of the subtree

FR-45: **Heap Examples**

\[
\begin{array}{c}
1 \\
2 \\
\quad 7 \\
\quad \quad 9 \\
\end{array}
\begin{array}{c}
4 \\
3 \\
\quad 14 \\
\quad \quad 15 \\
\end{array}
\]

Valid Heap

FR-46: **Heap Examples**

\[
\begin{array}{c}
1 \\
8 \\
\quad 2 \\
\quad \quad 5 \\
\end{array}
\begin{array}{c}
5 \\
9 \\
\quad 4 \\
\quad \quad 14 \\
\end{array}
\]

Invalid Heap

FR-47: **Heap Insert**

- There is only one place we can insert an element into a heap, so that the heap remains a complete binary tree
- Inserting an element at the “end” of the heap might break the heap property
 - Swap the inserted value up the tree
FR-48: **Heap Remove Largest**

- Removing the Root of the heap is hard
- Removing the element at the “end” of the heap is easy
 - Move last element into root
 - Shift the root down, until heap property is satisfied

FR-49: **Representing Heaps**

A Complete Binary Tree can be stored in an array:

```
1
  2 14
  5 3 16 15
  7 6 8 9
```

FR-50: **CBTs as Arrays**

- The root is stored at index 0
- For the node stored at index \(i \):
 - Left child is stored at index \(2 \times i + 1 \)
 - Right child is stored at index \(2 \times i + 2 \)
 - Parent is stored at index \((i − 1)/2 \)

FR-51: **Trees with > 2 children**

How can we implement trees with nodes that have > 2 children?
FR-52: **Trees with > 2 children**

- Array of Children

FR-53: **Trees with > 2 children**

- Linked List of Children

FR-54: **Left Child / Right Sibling**

- We can integrate the linked lists with the nodes themselves:
FR-55: **Serializing Binary Trees**

- Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t know when we’ve hit a null pointer
- Store null pointers, too!

```
    A
   / \    \   
  B  C     F
 / \    / \
D  E   G
```

```
ABD///EG///C/F//
```

FR-56: **Serializing Binary Trees**

- In most trees, more null pointers than internal nodes
- Instead of marking null pointers, mark internal nodes
- Still need to mark some nulls, for nodes with 1 child

```
    A
   / \    \   
  B  C     F
 / \    / \
D  E   G
```

FR-57: **Serializing General Trees**
• Store an “end of children” marker

FR-58: **Main Memory Sorting**

• All data elements can be stored in memory at the same time
• Data stored in an array, indexed from $0 \ldots n - 1$, where n is the number of elements
• Each element has a key value (accessed with a `key()` method)
• We can compare keys for \lt, \geq, $=$
• For illustration, we will use arrays of integers – though often keys will be strings, other Comparable types

FR-59: **Stable Sorting**

• A sorting algorithm is *Stable* if the relative order of duplicates is preserved
• The order of duplicates matters if the *keys* are duplicated, but the *records* are not.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>J</td>
<td>E</td>
<td>A</td>
<td>S</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>o</td>
<td>o</td>
<td>d</td>
<td>m</td>
<td>u</td>
<td>l</td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>e</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A *non*-Stable sort

FR-60: **Insertion Sort**

• Separate list into sorted portion, and unsorted portion
• Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list
 • (A list of one element is always sorted)
• Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted
FR-61: **Bubble Sort**
- Scan list from the last index to index 0, swapping the smallest element to the front of the list
- Scan the list from the last index to index 1, swapping the second smallest element to index 1
- Scan the list from the last index to index 2, swapping the third smallest element to index 2

 ...
- Swap the second largest element into position \((n-2)\)

FR-62: **Selection Sort**
- Scan through the list, and find the smallest element
- Swap smallest element into position 0
- Scan through the list, and find the second smallest element
- Swap second smallest element into position 1

 ...
- Scan through the list, and find the second largest element
- Swap smallest largest into position \(n-2\)

FR-63: **Shell Sort**
- Sort \(n/2\) sublists of length 2, using insertion sort
- Sort \(n/4\) sublists of length 4, using insertion sort
- Sort \(n/8\) sublists of length 8, using insertion sort

 ...
- Sort 2 sublists of length \(n/2\), using insertion sort
- Sort 1 sublist of length \(n\), using insertion sort

FR-64: **Merge Sort**
- Base Case:
 - A list of length 1 or length 0 is already sorted
- Recursive Case:
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7 FR-65: **Divide & Conquer**
Quick Sort:
- Divide the list two parts
 - Some work required – Small elements in left sublist, large elements in right sublist
• Recursively sort two parts
• Combine sorted lists into one list
 • No work required!

FR-66: **Quick Sort**

• Pick a pivot element
• Reorder the list:
 • All elements < pivot
 • Pivot element
 • All elements > pivot
• Recursively sort elements < pivot
• Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6

FR-67: **Comparison Sorting**

• Comparison sorts work by comparing elements
 • Can only compare 2 elements at a time
 • Check for <, >, =.
• All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
• If we know nothing about the list to be sorted, we need to use a comparison sort

FR-68: **Sorting Lower Bound**

• All comparison sorting algorithms can be represented by a decision tree with \(n! \) leaves
• Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
• A decision tree with \(n! \) leaves must have a height of at least \(n \log n \)
• All comparison sorting algorithms have worst-case running time \(\Omega(n \log n) \)

FR-69: **Binsort**

• Sort \(n \) elements, in the range 1 . . . \(m \)
• Keep a list of \(m \) linked lists
• Insert each element into the appropriate linked lists
• Collect the lists together

FR-70: **Bucket Sort**

• Modify binsort so that each list can hold a range of values
• Need to keep each bucket sorted
FR-71: **Counting Sort**

```java
for (i=0; i<A.length; i++)
    C[A[i].key()]++; 
for (i=1; i<C.length; i++)
    C[i] = C[i] + C[i-1];
for (i=A.length - 1; i>=0; i--) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=0; i<A.length; i++)
    A[i] = B[i];
```

FR-72: Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc
 - Each sort can be done in linear time, using counting sort
- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

FR-73: Radix Sort Second Try:

- Sort by *least significant* digit first
- Then sort by next-least significant digit, using a Stable sort

 ...
 - Sort by most significant digit, using a Stable sort

 At the end, the list will be completely sorted.

FR-74: Searching & Selecting

- Maintain a Database (keys and associated data)
- Operations:
 - **Add** a key / value pair to the database
 - **Remove** a key (and associated value) from the database
 - **Find** the value associated with a key

FR-75: Hash Function

- What if we had a “magic function” –
• Takes a key as input
 • Returns the index in the array where the key can be found, if the key is in the array

• To add an element
 • Put the key through the magic function, to get a location
 • Store element in that location

• To find an element
 • Put the key through the magic function, to get a location
 • See if the key is stored in that location

FR-76: Hash Function

• The “magic function” is called a \textit{Hash function}

• If $\text{hash}(\text{key}) = i$, we say that the key hashes to the value i

• We’d like to ensure that different keys will always hash to different values.

• Not possible – too many possible keys

FR-77: Integer Hash Function

• When two keys hash to the same value, a \textit{collision} occurs.

• We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.

• Example: Keys are integers
 • Keys are in range $1 \ldots m$
 • Array indices are in range $1 \ldots n$
 • $n << m$

• $\text{hash}(k) = k \mod n$

FR-78: String Hash Function

• Hash tables are usually used to store string values

• If we can convert a string into an integer, we can use the integer hash function

• How can we convert a string into an integer?
 • Concatenate ASCII digits together

 \[\sum_{k=0}^{\text{keysize} - 1} \text{key}[k] \times 256^{\text{keysize} - k - 1} \]

FR-79: String Hash Function

• Concatenating digits does not work, since numbers get big too fast. Solutions:
• Overlap digits a little (use base of 32 instead of 256)
• Ignore early characters (shift them off the left side of the string)

```java
static long hash(String key, int tablesize) {
    long h = 0;
    int i;
    for (i=0; i<key.length(); i++)
        h = (h << 4) + (int) key.charAt(i);
    return h % tablesize;
}
```

FR-80: ElfHash

• For each new character, the hash value is shifted to the left, and the new character is added to the accumulated value.
• If the string is long, the early characters will “fall off” the end of the hash value when it is shifted
 • Early characters will not affect the hash value of large strings
• Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and XOR’ed.
• Every character will influence the value of the hash function.

FR-81: Collisions

• When two keys hash to the same value, a collision occurs
• A collision strategy tells us what to do when a collision occurs
• Two basic collision strategies:
 • Open Hashing (Closed Addressing, Separate Chaining)
 • Closed Hashing (Open Addressing)

FR-82: Closed Hashing

• To add element X to a closed hash table:
 • Find the smallest i, such that Array[hash(x) + f(i)] is empty (wrap around if necessary)
 • Add X to Array[hash(x) + f(i)]
 • If f(i) = i, linear probing

FR-83: Closed Hashing

• Quadratic probing
 • Find the smallest i, such that Array[hash(x) + f(i)] is empty
 • Add X to Array[hash(x) + f(i)]
 • f(i) = i^2

FR-84: Closed Hashing
• Multiple keys hash to the same element
 • Secondary clustering

• Double Hashing
 • Use a secondary hash function to determine how far ahead to look
 • \(f(i) = i \times \text{hash2(key)} \)

FR-85: **Disjoint Sets**

• Elements will be integers (for now)

• Operations:
 • CreateSets(n) – Create n sets, for integers 0..(n-1)
 • Union(x,y) – merge the set containing x and the set containing y
 • Find(x) – return a representation of x’s set
 • Find(x) = Find(y) iff x,y are in the same set

FR-86: **Implementing Disjoint Sets**

• Find: (pseudo-Java)

```java
int Find(x) {
    while (Parent[x] > 0)
        x = Parent[x]
    return x
}
```

FR-87: **Implementing Disjoint Sets**

• Union(x,y) (pseudo-Java)

```java
void Union(x,y) {
    rootx = Find(x);
    rooty = Find(y);
    Parent[rootx] = Parent[rooty];
}
```

FR-88: **Union by Rank**

• When we merge two sets:
 • Have the shorter tree point to the taller tree
 • Height of taller tree does not change
 • If trees have the same height, choose arbitrarily

FR-89: **Path Compression**

• After each call to Find(x), change x’s parent pointer to point directly at root
 • Also, change all parent pointers on path from x to root
FR-90: **Graphs**

- A graph consists of:
 - A set of nodes or vertices (terms are interchangable)
 - A set of edges or arcs (terms are interchangable)
- Edges in graph can be either directed or undirected

FR-91: **Graphs & Edges**

- Edges can be labeled or unlabeled
 - Edge labels are typically the cost associated with an edge
 - e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

FR-92: **Graph Representations**

- Adjacency Matrix
 - Represent a graph with a two-dimensional array G
 - $G[i][j] = 1$ if there is an edge from node i to node j
 - $G[i][j] = 0$ if there is no edge from node i to node j
 - If graph is undirected, matrix is symmetric
 - Can represent edges labeled with a cost as well:
 - $G[i][j] = \text{cost of link between } i \text{ and } j$
 - If there is no direct link, $G[i][j] = \infty$

FR-93: **Adjacency Matrix**

- Examples:

```
0 1 2 3
0 0 1 0 1
1 1 0 1 1
2 0 1 0 0
3 1 1 0 0
```

FR-94: **Adjacency Matrix**

- Examples:
FR-95: **Graph Representations**

- Adjacency List
 - Maintain a linked-list of the neighbors of every vertex.
 - n vertices
 - Array of n lists, one per vertex
 - Each list i contains a list of all vertices adjacent to i.

FR-96: **Adjacency List**

- Examples:

```
0 1 2 3
0 0 1 0 0
1 1 0 1 1
2 0 0 0 0
3 1 0 0 0
```

FR-97: **Adjacency List**

- Examples:

```
0 1 2 3
0 1
1 3
2 1
3 2
```

- Note – lists are not always sorted

FR-98: **Topological Sort**
• Directed Acyclic Graph, Vertices \(v_1 \ldots v_n \)
• Create an ordering of the vertices
 • If there a path from \(v_i \) to \(v_j \), then \(v_i \) appears before \(v_j \) in the ordering
 • Example: Prerequisite chains

FR-99: **Topological Sort**

• Pick a node \(v_k \) with no incident edges
• Add \(v_k \) to the ordering
• Remove \(v_k \) and all edges from \(v_k \) from the graph
• Repeat until all nodes are picked.

FR-100: **Graph Traversals**

• Visit every vertex, in an order defined by the topology of the graph.
 • Two major traversals:
 • Depth First Search
 • Breadth First Search

FR-101: **Depth First Search**

• Starting from a specific node (pseudo-code):

```java
DFS(Edge G[], int vertex, boolean Visited[]) {
    Visited[vertex] = true;
    for each node w adjacent to vertex:
        if (!Visited[w])
            DFS(G, w, Visited);
}
```

FR-102: **Depth First Search**

```java
class Edge {
    public int neighbor;
    public int next;
}
void DFS(Edge G[], int vertex, boolean Visited[]) {
    Edge tmp;
    Visited[vertex] = true;
    for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
        if (!Visited[tmp.neighbor])
            DFS(G, tmp.neighbor, Visited);
    }
}
```

FR-103: **Breadth First Search**

• DFS: Look as **Deep** as possible, before looking wide
• Examine all descendants of a node, before looking at siblings

• BFS: Look as Wide as possible, before looking deep
 • Visit all nodes 1 away, then 2 away, then three away, and so on

FR-104: **Search Trees**

• Describes the order that nodes are examined in a traversal

• Directed Tree
 • Directed edge from \(v_1 \) to \(v_2 \) if the edge \((v_1, v_2)\) was followed during the traversal

FR-105: **Computing Shortest Path**

• Given a directed weighted graph \(G \) (all weights non-negative) and two vertices \(x \) and \(y \), find the least-cost path from \(x \) to \(y \) in \(G \).
 • Undirected graph is a special case of a directed graph, with symmetric edges
 • Least-cost path may not be the path containing the fewest edges
 • “shortest path” == “least cost path”
 • “path containing fewest edges” = “path containing fewest edges”

FR-106: **Single Source Shortest Path**

• If all edges have unit weight,
 • We can use Breadth First Search to compute the shortest path
 • BFS Spanning Tree contains shortest path to each node in the graph
 • Need to do some more work to create & save BFS spanning tree
 • When edges have differing weights, this obviously will not work

FR-107: **Single Source Shortest Path**

• Divide the vertices into two sets:
 • Vertices whose shortest path from the initial vertex is known
 • Vertices whose shortest path from the initial vertex is not known
 • Initially, only the initial vertex is known
 • Move vertices one at a time from the unknown set to the known set, until all vertices are known

FR-108: **Dijkstra’s Algorithm**

• Keep a table that contains, for each vertex
 • Is the distance to that vertex known?
 • What is the best distance we’ve found so far?

• Repeat:
• Pick the smallest unknown distance
• mark it as known
• update the distance of all unknown neighbors of that node

• Until all vertices are known

FR-109: **Floyd’s Algorithm**
• Vertices numbered from 1..n
• k-path from vertex v to vertex u is a path whose intermediate vertices (other than v and u) contain only vertices numbered k or less
• 0-path is a direct link

FR-110: **Floyd’s Algorithm**
• Shortest n-path = Shortest path
• Shortest 0-path:
 • ∞ if there is no direct link
 • Cost of the direct link, otherwise
• If we could use the shortest k-path to find the shortest (k + 1) path, we would be set

FR-111: **Floyd’s Algorithm**
• Shortest k-path from v to u either goes through vertex k, or it does not
• If not:
 • Shortest k-path = shortest (k − 1)-path
• If so:
 • Shortest k-path = shortest k − 1 path from v to k, followed by the shortest k − 1 path from k to w

FR-112: **Floyd’s Algorithm**
• If we had the shortest k-path for all pairs (v, w), we could obtain the shortest k + 1-path for all pairs
 • For each pair v, w, compare:
 • length of the k-path from v to w
 • length of the k-path from v to k appended to the k-path from k to w
 • Set the k + 1 path from v to w to be the minimum of the two paths above

FR-113: **Floyd’s Algorithm**
• Let $D_k[v, w]$ be the length of the shortest k-path from v to w.
• $D_0[v, w] =$ cost of arc from v to w (∞ if no direct link)
• $D_k[v, w] = \text{MIN}(D_{k-1}[v, w], D_{k-1}[v, k] + D_{k-1}[k, w])$
• Create D_0, use D_0 to create D_1, use D_1 to create D_2, and so on – until we have D_n
FR-114: Spanning Trees

- Given a connected, undirected graph G
 - A subgraph of G contains a subset of the vertices and edges in G
 - A Spanning Tree T of G is:
 - subgraph of G
 - contains all vertices in G
 - connected
 - acyclic

FR-115: Spanning Tree Examples

- Graph

```
0 1
2 3 4
5 6
```

FR-116: Spanning Tree Examples

- Spanning Tree

```
0 1
2 3
5 6
```

FR-117: Minimal Cost Spanning Tree

- Minimal Cost Spanning Tree
 - Given a weighted, undirected graph G
 - Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

FR-118: Kruskal's Algorithm
• Start with an empty graph (no edges)
• Sort the edges by cost
• For each edge \(e \) (in increasing order of cost)
 • Add \(e \) to \(G \) if it would not cause a cycle

FR-119: **Kruskal’s Algorithm**

• We need to:
 • Put each vertex in its own tree
 • Given any two vertices \(v_1 \) and \(v_2 \), determine if they are in the same tree
 • Given any two vertices \(v_1 \) and \(v_2 \), merge the tree containing \(v_1 \) and the tree containing \(v_2 \)
 • ... sound familiar?

FR-120: **Kruskal’s Algorithm**

• Disjoint sets!
• Create a list of all edges
• Sort list of edges
• For each edge \(e = (v_1, v_2) \) in the list
 • if \(\text{FIND}(v_1) \neq \text{FIND}(v_2) \)
 • Add \(e \) to spanning tree
 • \(\text{UNION}(v_1, v_2) \)

FR-121: **Prim’s Algorithm**

• Grow that spanning tree out from an initial vertex
• Divide the graph into two sets of vertices
 • vertices in the spanning tree
 • vertices *not* in the spanning tree
• Initially, Start vertex is in the spanning tree, all other vertices are not in the tree
 • Pick the initial vertex arbitrarily

FR-122: **Prim’s Algorithm**

• While there are vertices not in the spanning tree
 • Add the cheapest vertex to the spanning tree

FR-123: **Indexing**

• Operations:
 • Add an element
- Remove an element
- Find an element, using a key
- Find all elements in a range of key values

FR-124: **2-3 Trees**

- Generalized Binary Search Tree
 - Each node has 1 or 2 keys
 - Each (non-leaf) node has 2-3 children
 - hence the name, 2-3 Trees
 - All leaves are at the same depth

FR-125: **Finding in 2-3 Trees**

- How can we find an element in a 2-3 tree?
 - If the tree is empty, return false
 - If the element is stored at the root, return true
 - Otherwise, recursively find in the appropriate subtree

FR-126: **Inserting into 2-3 Trees**

- Always insert at the leaves
- To insert an element:
 - Find the leaf where the element would live, if it was in the tree
 - Add the element to that leaf
 - What if the leaf already has 2 elements?
 - Split!

FR-127: **Splitting nodes**

- To split a node in a 2-3 tree that has 3 elements:
 - Split nodes into two nodes
 - One node contains the smallest element
 - Other node contains the largest element
 - Add median element to parent
 - Parent can then handle the extra pointer

FR-128: **2-3 Tree Example**

- Inserting elements 1-9 (in order) into a 2-3 tree

FR-129: **2-3 Tree Example**
• Inserting elements 1-9 (in order) into a 2-3 tree

FR-130: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

1 2

Too many keys, need to split

FR-131: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

1 2 3

FR-132: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

1 2
2
3

FR-133: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

1 2
2
1 3 4

Too many keys, need to split

FR-134: 2-3 Tree Example
• Inserting elements 1-9 (in order) into a 2-3 tree

1 2
2
1 3 4 5

FR-135: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2 4
 /   \
1 3  5
```

FR-136: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2 4
 /   \
1 3  5 6
```

Too many keys need to split

FR-137: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2 4
 /   \
1 3  5 6 7
```

Too many keys need to split

FR-138: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

```
  2 4 6
 /   \
1 3  5 7
```
FR-139: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

FR-140: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

FR-141: **2-3 Tree Example**
- Inserting elements 1-9 (in order) into a 2-3 tree

FR-142: **Deleting Leaves**
• If leaf contains 2 keys
 • Can safely remove a key

FR-143: **Deleting Leaves**

```
  4  8
  /  \\  \
3   5  7  11
```

• Deleting 7

FR-144: **Deleting Leaves**

```
  4  8
  /  \\  \
3   5          11
```

• Deleting 7

FR-145: **Deleting Leaves**

• If leaf contains 1 key
 • Cannot remove key without making leaf empty
 • Try to steal extra key from sibling

FR-146: **Deleting Leaves**

```
  4  8
  /  \\  \
\   5  7  11
```

• Steal key from sibling *through parent*
FR-147: **Deleting Leaves**

- Steal key from sibling *through parent*

FR-148: **Deleting Leaves**

- If leaf contains 1 key, and no sibling contains extra keys
 - Cannot remove key without making leaf empty
 - Cannot steal a key from a sibling
 - Merge with sibling
 - split in reverse

FR-149: **Merging Nodes**

- Removing the 4

FR-150: **Merging Nodes**

- Removing the 4
 - Combine 5, 7 into one node

FR-151: **Deleting Interior Keys**
• How can we delete keys from non-leaf nodes?
 • Replace key with smallest element subtree to right of key
 • Recursively delete smallest element from subtree to right of key
 • (can also use largest element in subtree to left of key)

FR-152: Deleting Interior Keys

```
   4
  /   \
 2     7
 / \   / \  
1   3 5   6
```

• Deleting the 4

FR-153: Deleting Interior Keys

```
   4
  /   \
 2     7
 / \   / \  
1   3 5   6
```

• Deleting the 4
 • Replace 4 with smallest element in tree to right of 4

FR-154: Deleting Interior Keys

```
   5
  /   \
 2     7
 / \   / \  
1   3 6   8
```

FR-155: Deleting Interior Keys
• Deleting the 5

FR-156: **Deleting Interior Keys**

• Deleting the 5
• Replace the 5 with the smallest element in tree to right of 5

FR-157: **Deleting Interior Keys**

• Deleting the 5
• Replace the 5 with the smallest element in tree to right of 5
• Node with two few keys

FR-158: **Deleting Interior Keys**
- Node with two few keys
- Steal a key from a sibling

FR-159: **Deleting Interior Keys**

```
        6
       / \  
      2   8
     / \  / \  
    1   3  7   9
```

FR-160: **Deleting Interior Keys**

```
        6 10
       /  \  
      2   8
     / \  / \  
    1   3  7   9 12 13
```

- Removing the 6

FR-161: **Deleting Interior Keys**

```
        6 10
       /  \  
      2   8
     / \  / \  
    1   3  7   9 12 13
```

- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

FR-162: **Deleting Interior Keys**

```
        7 10
       /   \  
      2    8
     / \  / \  
    1   3  9 12 13
```
• Node with too few keys
 • Can’t steal key from sibling
 • Merge with sibling

FR-163: Deleting Interior Keys

FR-164: Deleting Interior Keys

FR-165: Generalizing 2-3 Trees

• In 2-3 Trees:
 • Each node has 1 or 2 keys
 • Each interior node has 2 or 3 children
 • We can generalize 2-3 trees to allow more keys / node

FR-166: B-Trees

• A B-Tree of maximum degree k:
 • All interior nodes have \(\lceil k/2 \rceil \ldots k \) children
 • All nodes have \(\lceil k/2 \rceil - 1 \ldots k - 1 \) keys
 • 2-3 Tree is a B-Tree of maximum degree 3
FR-167: **B-Trees**

- B-Tree with maximum degree 5
 - Interior nodes have 3 – 5 children
 - All nodes have 2-4 keys

FR-168: **Connected Components**

- Subgraph (subset of the vertices) that is strongly connected.

FR-169: **Connected Components**

- Subgraph (subset of the vertices) that is strongly connected.

FR-170: **Connected Components**

- Subgraph (subset of the vertices) that is strongly connected.
FR-171: Connected Components

- Subgraph (subset of the vertices) that is strongly connected.

FR-172: DFS Revisited

- We can keep track of the order in which we visit the elements in a Depth-First Search.
- For any vertex v in a DFS:
 - \(d[v] = \text{Discovery time} \) – when the vertex is first visited
 - \(f[v] = \text{Finishing time} \) – when we have finished with a vertex (and all of its children)

```java
class Edge {
    public int neighbor;
    public int next;
}

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
    Edge tmp;
    Visited[vertex] = true;
    d[vertex] = time++;
    for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {
        if (!Visited[tmp.neighbor])
            DFS(G, tmp.neighbor, Visited);
    }
    f[vertex] = time++;
}
```

FR-174: DFS Example

FR-175: DFS Example
FR-176: DFS Example

FR-177: DFS Example
FR-178: DFS Example

FR-179: DFS Example
FR-180: DFS Example

FR-181: DFS Example
FR-182: DFS Example

FR-183: DFS Example
FR-184: DFS Example

FR-185: DFS Example
FR-186: DFS Example

FR-187: DFS Example
FR-188: DFS Example

FR-189: DFS Example
FR-190: DFS Example

d 1 d 3 d 11 d 12
f 10 f 8 f f 13

FR-191: DFS Example

d 1 d 3 d 11 d 12
f 10 f 8 f 16 f 13

FR-192: Using d[] & f[]

- Given two vertices v_1 and v_2, what do we know if $f[v_2] < f[v_1]$?
 - Either:
 - Path from v_1 to v_2
 - Start from v_1
 - Eventually visit v_2
 - Finish v_2
 - Finish v_1

FR-193: Using d[] & f[]

- Given two vertices v_1 and v_2, what do we know if $f[v_2] < f[v_1]$?
 - Either:
• Path from v_1 to v_2
• No path from v_2 to v_1
 • Start from v_2
 • Eventually finish v_2
 • Start from v_1
 • Eventually finish v_1

FR-194: Using $d[]$ & $f[]$

• If $f[v_2] < f[v_1]$:
 • Either a path from v_1 to v_2, or no path from v_2 to v_1
 • If there is a path from v_2 to v_1, then there must be a path from v_1 to v_2
• $f[v_2] < f[v_1]$ and a path from v_2 to $v_1 \Rightarrow v_1$ and v_2 are in the same connected component

FR-195: Connected Components

• Run DFS on G, calculating $f[]$ times
• Compute G^T
• Run DFS on G^T – examining nodes in inverse order of finishing times from first DFS
• Any nodes that are in the same DFS search tree in G^T must be in the same connected component

FR-196: Dynamic Programming

• Simple, recursive solution to a problem
• Naive solution recalculates same value many times
• Leads to exponential running time

FR-197: Dynamic Programming

• Recalculating values can lead to unacceptable run times
 • Even if the total number of values that needs to be calculated is small
• Solution: Don’t recalculate values
 • Calculate each value once
 • Store results in a table
 • Use the table to calculate larger results

FR-198: Faster Fibonacci

```java
int Fibonacci(int n) {
  int[] FIB = new int[n+1];
  FIB[0] = 1;
  FIB[1] = 1;
```
for (i=2; i<=n; i++)
 FIB[i] = FIB[i-1] + FIB[i-2];

return FIB[n];
}

FR-199: Dynamic Programming

- To create a dynamic programming solution to a problem:
 - Create a simple recursive solution (that may require a large number of repeat calculations)
 - Design a table to hold partial results
 - Fill the table such that whenever a partial result is needed, it is already in the table

FR-200: Memoization

- Can be difficult to determine order to fill the table
- We can use a table together with recursive solution
 - Initialize table with sentinel value
 - In recursive function:
 - Check table – if entry is there, use it
 - Otherwise, call function recursively
 - Set appropriate table value
 - return table value

FR-201: Fibonacci Memoized

```c
int Fibonacci(int n) {
    if (n == 0)
        return 1;
    if (n == 1)
        return 1;
    if (T[n] == -1)
        T[n] = Fibonacci(n-1) + Fibonacci(n-2);

    return T[n];
}
```

FR-202: Hard Problems

- Some algorithms take exponential time
 - Simple version of Fibonacci
 - Faster versions of Fibonacci that take linear time
- Some Problems take exponential time
 - All algorithms that solve the problem take exponential time
• Towers of Hanoi

FR-203: **Reductions**

• A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2
 • Given an instance of Problem 1, create an instance of Problem 2
 • Solve the instance of Problem 2
 • Use the solution of Problem 2 to create a solution to Problem 1

FR-204: **Reductions**

• We can use a Reduction to compare problems
 • If there is a reduction from problem A to problem B that can be done quickly
 • Problem B is known to be hard (cannot be solved quickly)
 • Problem A cannot be solved quickly, either

FR-205: **NP Problems**

• A problem is NP if a solution can be verified easily
 • Traveling Salesman Problem (TSP)
 • Given a graph with weighted vertices, and a cost bound k
 • Is there a cycle that contains all vertices in the graph, that has a total cost less than k?
 • Given any potential solution to the TSP, we can easily verify that the solution is correct

FR-206: **Non-Deterministic Machine**

• Two Definitions of Non-Deterministic Machines:
 • “Oracle” – allows machine to magically make a correct guess
 • Massively parallel – simultaneously try to verify all possible solutions
 • Try all permutations of vertices in a graph, see if any form a cycle with cost ⩽ k
 • Try all colorings of a graph with up to k colors, see if any are legal
 • Try all permutations of a list, see if any are sorted

FR-207: **NP vs. P**

• A problem is NP if a non-deterministic machine can solve it in polynomial time
 • Of course, we have no real non-deterministic machines
• A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time
 • Sorting is in P – can sort a list in polynomial time
 • All problems in P are also in NP
 • Ignore the oracle

FR-208: **NP-Complete**
An NP problem is “NP-Complete” if there is a reduction from any NP problem to that problem

For example, Traveling Salesman (TSP) is NP-Complete

- We can reduce any NP problem to TSP
- If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time

TSP is not unique – many NP-Complete problems

FR-209: \(\text{NP} = \text{P?} \)

- If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly
- If that is the case, then \(\text{NP} = \text{P} \)
 - \(\text{P} \) is set of problems that can be solved by a standard machine in polynomial time
- Most everyone believes that \(\text{NP} \neq \text{P} \), and all NP-Complete problems require exponential time on standard computers – not yet been proven

FR-210: \textbf{NP-Completeness}

- What can we do, if we need to solve a problem that is NP-Complete?
 - If the problem we need to solve is very small (\(\leq 20 \)), an exponential solution might be OK
 - We can solve an approximation of the problem
 - Color a graph using a non-optimal number of colors
 - Find a Traveling Salesman tour that is not optimal

FR-211: \textbf{Impossible Problems}

- Some problems are “easy” – require a fairly small amount of time to solve
 - Sorting
- Some problems are “probably hard” – believed to require exponential time to solve
 - TSP, Graph Coloring, etc
- Some problems are “hard” – known to require an exponential amount of time to solve
 - Towers of Hanoi
- Some problems are impossible – \textit{cannot} be solved

FR-212: \textbf{Halting Problem}

- Program is running – seems to be taking a long time
- We’d like to know if the program will eventually finish, or if it is in an infinite loop
- Great debugging tool:
 - Takes as input the source code to a program \(p \), and an input \(i \)
 - Determines if \(p \) will run forever when run on \(i \)
- No such tool can exist!
FR-213: Halting Problem

boolean halt(char [] program, char [] input) {
 /* code to determine if the program
 halts when run on the input */
 if (program halts on input)
 return true;
 else
 return false;
}

FR-214: Halting Problem

boolean selfhalt(char [] program) {
 if (halt(program, program))
 return true;
 else
 return false;
}

void contrary(char [] program) {
 if (selfhalt(program)
 while(true); /* infinite loop */
}

• what happens when we call contrary, passing in its own source code as input?

FR-215: Binomial Trees

• B_0 is a tree containing a single node

• To build B_k:
 • Start with B_{k-1}
 • Add B_{k-1} as left subtree

FR-216: Binomial Trees

\[
\begin{align*}
B_0 & \quad B_1 & \quad B_2 & \quad B_3 & \quad B_4 \\
\begin{array}{cccc}
\circ & \circ & \circ & \circ \\
\end{array}
\end{align*}
\]

FR-217: Binomial Trees
FR-218: **Binomial Trees**

- Equivalent definition
 - B_0 is a binomial heap with a single node
 - B_k is a binomial heap with k children:
 - $B_0 \ldots B_{k-1}$

FR-219: **Binomial Trees**

```
  B_0  B_1  B_2  B_3  B_4
    \   \  \   \  \  \  \  \  \
     \   \  \  \  \  \  \  \  \
        \   \  \  \  \  \  \  \
          \   \  \  \  \  \  \
            \   \  \  \  \  \
              \   \  \  \  \
                \   \  \  \
                  \   \  \
                    \   \
                      \ 
```

FR-220: **Binomial Trees**

```
  B_0  B_1  B_2  B_3  B_4
    \   \  \  \  \  \  \  \  \
     \   \  \  \  \  \  \  \  \
        \   \  \  \  \  \  \  \  \
          \   \  \  \  \  \  \  \  \
            \   \  \  \  \  \  \  \  \
              \   \  \  \  \  \  \  \  \
                \   \  \  \  \  \  \  \  \
                  \   \  \  \  \  \  \  \  \
                    \   \  \  \  \  \  \  \  \
                      \   \  \  \  \  \  \  \  \
```

FR-221: **Binomial Heaps**

- A Binomial Heap is:
 - Set of binomial trees, each of which has the heap property
 - Each node in every tree is \leq all of its children
• All trees in the set have a different root degree
 • Can’t have two B_3’s, for instance

FR-222: Binomial Heaps

FR-223: Binomial Heaps
 • Representing Binomial Heaps
 • Each node contains:
 • left child, right sibling, parent pointers
 • degree (is the tree rooted at this node B_0, B_1, etc.)
 • data
 • Each list of children sorted by degree

FR-224: Binomial Heaps
FR-225: Binomial Heaps

- How can we find the minimum element in a binomial heap?
 - Look at the root of each tree in the list, find smallest value

- How long does it take?
 - Heap has \(n \) elements
 - Represent \(n \) as a binary number
 - \(B_k \) is in heap iff \(k \)th binary digit of \(n \) is 1
 - Number of trees in heap \(\in O(\log n) \)

FR-226: Binomial Heaps

- Merging Heaps \(H_1 \) and \(H_2 \)
 - Merge root lists of \(H_1 \) and \(H_2 \)
 - Could now have two trees with same degree
 - Go through list from smallest degree to largest degree
 - If two trees have same degree, combine them into one tree of larger degree
 - If three trees have same degree (how can this happen?) leave one, combine other two into tree of larger degree

FR-227: Binomial Heaps

```
10  5
  22 7
    25
  25

12 9 15
  13
  15
  20
  30

11 3
  14
    30
  17
```

FR-228: Binomial Heaps

```
10  11
  22 7
    25
  25

5  3
  14 6
    13
  13

8
  12
    17
```

FR-229: Binomial Heaps
FR-230: Binomial Heaps

FR-231: Binomial Heaps

FR-232: Binomial Heaps

- Removing minimum element
- Find tree T that has minimum value at root, remove T from the list
- Remove the root of T
 - Leaving a list of smaller trees
- Reverse list of smaller trees
- Merge two lists of trees together

FR-233: **Binomial Heaps**

- Removing minimum element

![Binary heap diagram]

FR-234: **Binomial Heaps**

- Removing minimum element

![Binary heap diagram]

FR-235: **Binomial Heaps**

- Removing minimum element

![Binary heap diagram]
FR-236: Binomial Heaps

- Removing minimum element

FR-237: Binomial Heaps

- Removing minimum element
FR-238: **Binomial Heaps**

- Removing minimum element

[Diagram of a binomial heap with nodes 6, 5, 8, 10, 22, 7, 12, 9, 15, 14, 11, 25, 13, 15, 20, 30, 17]

FR-239: **Binomial Heaps**

- Removing minimum element

[Diagram of a binomial heap with nodes 6, 5, 8, 10, 22, 7, 12, 9, 15, 14, 11, 25, 13, 15, 20, 30, 17]

FR-240: **Binomial Heaps**

- Removing minimum element
 - Time?
 - Find the smallest element: $O(\lg n)$
 - Reverse list of children $O(\lg n)$
 - Merge heaps $O(\lg n)$