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Fr0: Big-Oh Notation

O(f(n)) is the set of all functions that are bound from
above by f(n) p

T(n) € O(f(n)) if

dc, ng such that T'(n) < ¢ * f(n) when n > n,




Fr-1: Big-Oh Examples

n*)? O(n*) ? O(n) ?

S R
SESESEESEEZE
OO O O O O 0
v v uwuwuwuwuwuwuwuw
S £ & &% % & & &
= S 5 80+
S




(/)]

9

Q.

© L SSRGS
> EERREROO © O O © O O

LL]

— W v WY s wwuww

0 nnnn2n2nnnn42
i = S = 20 |
(@) = 2 s

. ik
I 2
AN N
: =
oc

™ 1O




Fr-3: Big-Oh Examples i
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Fr4: Big-Oh Examples i
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n3 for n even

Fr5: Big-Oh Examples lil
n tfor n odd
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Fr6: Big-Oh Examples Il
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Fr-7: Big-{) Notation

()(f(n)) is the set of all functions that are bound from
below by f(n)

T(n) € Qf(n)) i

dc, ng such that T'(n) > ¢ * f(n) when n > ny




Fr-s: Big-{) Notation

()(f(n)) is the set of all functions that are bound from
below by f(n)

T(n) € Qf(n)
dc, ng such that T'(n) > ¢ * f(n) when n > ny

f(n) € O(g(n)) = g(n) € Q(f(n))




Fr-9: Big-O Notation

O©(f(n)) is the set of all functions that are bound both
above and below by f(n). © is a tight bound

T(n) € O(f(n)) if

T'(n) € O(f(n)) and T'(n) € Q(f(n))




Fr-10: Big-Oh Rules

1. If f(n)

2. If f(n)
)
3. If fi(n

4. If fi(n) € O

(Also work for €2, and hence ©)




Fr-11: Big-Oh Guidelines

® Don’t include constants/low order terms in Big-Oh
® Simple statements: ©(1)
® | oops: O(inside) * # of iterations
* Nested loops work the same way
® Consecutive statements: Longest Statement

® Conditional (if) statements:
O(Test + longest branch)




Fr-12: Calculating Big-Oh

for (i=1; i<n; i++)
for (j=1; j < n/2; j++)
SUm++:




rFr-13: Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
for (j=1; j < n/2; j++) Executed n/2 times
sum++; 0(1)

Running time: O(n?), Q(n*), ©(n*)




Fr-14: Calculating Big-Oh

for (i=1; i<n; i=1i%*2)
sum++:




rFr-15: Calculating Big-Oh

for (i=1; i<n; i=i*2) Executed 1lg n times
sum++; 0(1)

Running Time: O(lgn), Q(lgn), O(lgn)




Fr-16: Calculating Big-Oh

for (i=1; i<n; i=1i%*2)
for (j=0; j < n; j =3 + 1)
sum++;
for (i=n; 1 >1; 1 =
for (j = 1; j < n;
for (k = 1;
sum++




Fr-17: Recurrence Relations

T'(n) = Time required to solve a problem of size n

Recurrence relations are used to determine the
running time of recursive programs — recurrence
relations themselves are recursive

T(0) = time to solve problem of size 0
— Base Case

T'(n) = time to solve problem of size n
— Recursive Case




Fr-18: Recurrence Relations

long power(long x, long n) {
if (n == 0)

return 1;
else
return x * power(x, n-1);
¥
T0) =¢ for some constant c;

T(n)=c+T(n—1) forsome constant c,




Fr-19: Building a Better Power

long power(long x, long n) {
if (n==0) return 1;
if (n==1) return x;
if ((n % 2) == 0)
return power (x*x, n/2);

else
return power (x*x, n/2) * x;




Fr-20: Building a Better Power

long power(long x, long n) {
if (n==0) return 1;
if (n==1) return x;
if ((n % 2) == 0)
return power (x*x, n/2);
else
return power (x*x, n/2) * x;

— T(n/2) —+ C3
ssume n is a power of 2)

PNy




Fr-21: 90Iving Recurrence Relations
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Fr22: 90Iving Recurrence Relations

T(O) — Cq

T(l) — 9
T(n)=T(n/2)+ c;
T(n)=T(n/2%) + kecs

We want to get rid of T'(n/2%). Since we know T'(1) ...

n/2" = 1

n

I
DO
o

lgn




Fr-23: S0Iving Recurrence Relations

T(1) = cy
T(n)=T(n/2%) + kecs

T(n) = T(n/2%") +lgncs
= T(1) 4+ c3lgn
= ¢y +c3legn
e O(lgn)




Fr-24: Abstract Data Types

® An Abstract Data Type is a definition of a type
based on the operations that can be performed on

It.
® An ADT is an interface

® Data in an ADT cannot be manipulated directly —
only through operations defined in the interface




Fr-25: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.
Stack Operations:

® Add an element to the top of the stack
® Remove the top element
® Check if the stack is empty




rFr-26: Stack Implementation

Array:

® Stack elements are stored in an array

® Jop of the stack is the end of the array

* |f the top of the stack was the beginning of the
array, a push or pop would require moving all
elements in the array

® Push: data[top++] = elem
® Pop: elem = data[--top]




Fr27: Stack Implementation

Linked List:

® Stack elements are stored in a linked list

® Top of the stack is the front of the linked list
® push: top = new Link(elem, top)

® pop: elem = top.element(); top = top.next()




Fr-28: QUeue

A Queue is a Last-In, First-Out (FIFO) data structure.
Queue Operations:

® Add an element to the end (tail) of the Queue

® Remove an element from the front (head) of the
Queue

® Check if the Queue is empty




Fr-20: Queue Implementation

Linked List:

® Maintain a pointer to the first and last element in
the Linked List

® Add elements to the back of the Linked List
® Remove elements from the front of the linked list

Enqueue: tail.setNext(new link(elem,null));
tail = tail.next()

Dequeue: elem = head.element();
head = head.next();




Fr-30: Queue Implementation

Array:

® Store queue elements in a circular array

® Maintain the index of the first element (head) and
the next location to be inserted (tail)

Enqueue: data[tail] = elem;
tail = (tail + 1) % size

Dequeue: elem = datalhead];
head = (head + 1) % size




Fr-31: Binary Trees

Binary Trees are Recursive Data Structures
® Base Case: Empty Tree

® Recursive Case: Node, consiting of:
e Left Child (Tree)
* Right Child (Tree)
e Data




Fr-32: Binary Tree Examples

The following are all Binary Trees (Though not Binary
Search Trees)

A A
B C 5
PN 7
D E /C
\ -




Fr-33: Iree Terminology

® Parent/ Child

® | eaf node

® Root node

® Edge (between nodes)
® Path

® Ancestor / Descendant

® Depth of a node n
e Length of path from root to n

® Height of a tree
e (Depth of deepest node) + 1




Fr-3a: Binary Search Trees

® Binary Irees

® For each node n, (value stored at node n) > (value
stored in left subtree)

® For each node n, (value stored at node n) < (value
stored in right subtree)




Fr-35: Writing a Recursive Algorithm

® Determine a small version of the problem, which
can be solved immediately. This is the base case

® Determine how to make the problem smaller

® Once the problem has been made smaller, we can
assume that the function that we are writing will
work correctly on the smaller problem (Recursive
Leap of Faith)

e Determine how to use the solution to the
smaller problem to solve the larger problem




Fr-36: Finding an Element in a BST

® First, the Base Case — when is it easy to determine
If an element is stored in a Binary Search Tree?

* |If the tree is empty, then the element can'’t be
there

e |f the element is stored at the root, then the
element Is there




rFr-37: Finding an Element in a BST

® Next, the Recursive Case — how do we make the
problem smaller?

* Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

* |f the element we are trying to find is < the
element stored at the root, use the left subtree.
Otherwise, use the right subtree.

® How do we use the solution to the subproblem to
solve the original problem?

* The solution to the subproblem is the solution
to the original problem (this is not always the
case in recursive algorithms)




Fr-38: Printing out a BST

To print out all element in a BST:

® Print all elements in the left subtree, in order
® Print out the element at the root of the tree

® Print all elements in the right subtree, in order

e Each subproblem is a smaller version of the
original problem — we can assume that a
recursive call will work!




Fr-39: Printing out a BST

void print(Node tree) {
if (tree != null) {
print (tree.left());
System.out.prinln(tree.element());
print(tree.right());

¥
¥




Fr-40: Inserting e into BST T’

® Base case — 1 is empty:
e Create a new tree, containing the element e

® Recursive Case:

e |f eis less than the element at the root of 7T,
Insert e into left subtree

* |If e Is greater than the element at the root of 7',
Insert e into the right subtree




Fr-41: Inserting e into BST T’

Node insert(Node tree, Comparable elem) {

if (tree == null) {
return new Node(elem);

if (elem.compareTo(tree.element() < 0)) {
tree.setLeft(insert(tree.left(), elem));
return tree;

+ else {
tree.setRight(insert(tree.right(), elem));
return tree;

¥
¥




Fr42: Deleting From a BST

® Removing a leaf:
* Remove element immediately

® Removing a node with one child:
e Just like removing from a linked list
* Make parent point to child

® Removing a node with two children:

* Replace node with largest element in left
subtree, or the smallest element in the right
subtree




Fr-43: Priority Queue ADT

Operations

® Add an element / priority pair
® Return (and remove) element with highest priority

Implementation:

® Heap
Add Element O(lgn)
Remove Higest Priority O(lgn)




Fr-44: Heap Definition

® Complete Binary Tree

® Heap Property

* For every subtree in a tree, each value in the
subtree is <= value stored at the root of the
subtree




Fr-45: Heap Examples

/ \
PN
9/\8 5/\4

Valid Heap




Fr46: Heap Examples

/\
2/\9 /\
N 4 ks

Invalid Heap




Fr-47: Heap Insert

® There is only one place we can insert an element
iInto a heap, so that the heap remains a complete
binary tree

® |nserting an element at the “end” of the heap might
break the heap property

* Swap the inserted value up the tree




Fr-48: Heap Remove Largest

® Removing the Root of the heap is hard

® Removing the element at the “end” of the heap is
easy

e Move last element into root
- Shift the root down, until heap property is
satisfied




Fr-49: Representing Heaps

A Complete Binary Tree can be stored in an array:

2/1\14
TN 1
7/\6 8/\

10 11 12 13




Fr50: CBTs as Arrays

® The root is stored at index O

® For the node stored at index «:
o |eft childis stored atindex 2 x7 + 1
e Right child is stored at index 2 x 7 4 2
e Parentis stored at index | (¢ — 1)/2]




Fr-51: 1rees with > 2 children

How can we implement trees with nodes that have > 2
children?




Fr-52: 1rees with > 2 children

® Array of Children




FrR-53: 1rees with > 2 children

® | inked List of Children

{)

LN

b e
5o b b




rrsa: Left Child / Right Sibling

® We can integrate the linked lists with the nodes
themselves:




Fr-55: Serializing Binary Trees

® Printing out nodes, in order that they would appear
iIn a PREORDER traversal does not work, because
we don’t know when we’ve hit a null pointer

® Store null pointers, too!

A
N
B C
N N
D = F
/

ABD) TEG /T T FI




Fr56: Serializing Binary Trees

® |n most trees, more null pointers than internal
nodes

® |nstead of marking null pointers, mark internal
nodes

® Still need to mark some nulls, for nodes with 1 child

A

/\
B C
e /O
D, = F
/
G




Fr57: Oerializing General Trees

® Store an “end of children” marker

YA\
B C
PN /\\
E I‘: H
K




Fr-58: Main Memory Sorting

® All data elements can be stored in memory at the
same time

® Data stored in an array, indexed from0...n — 1,
where n I1s the number of elements

® Fach element has a key value (accessed with a
key () method)

® We can compare keys for <, >, =

® For illustration, we will use arrays of integers —
though often keys will be strings, other
Comparable types




Fr-59: Stable Sorting

® A sorting algorithm is Stable if the relative order of

duplicates is preserved

® The order of duplicates matters if the keys are

duplicated, but the records are not.

311 211 1] 2] 3
B J = A S A B
0 0 d m u | u
b e y e d
11112 2| 3| 3
A J S = A B B
vle e | Y ] b a

A non-Stable sort

Key
Dat a

Key
Dat a




Fr-60: INsertion Sort

® Separate list into sorted portion, and unsorted
portion

® |nitially, sorted portion contains first element in the
list, unsorted portion is the rest of the list
* (A list of one element is always sorted)

® Repeatedly insert an element from the unsorted
list into the sorted list, until the list is sorted




Fr-61: Bubble Sort

® Scan list from the last index to index 0, swapping
the smallest element to the front of the list

® Scan the list from the last index to index 1,
swapping the second smallest element to index 1

® Scan the list from the last index to index 2,
swapping the third smallest element to index 2

® Swap the second largest element into position
(n— 2)




Fr-62: Selection Sort

® Scan through the list, and find the smallest element
® Swap smallest element into position 0

® Scan through the list, and find the second smallest
element

® Swap second smallest element into position 1

® Scan through the list, and find the second largest
element

® Swap smallest largest into position n — 2




Fr-63: Shell Sort

® Sort n/2 sublists of
® Sort n/4 sublists of
® Sort n/8 sublists of

engt
engt
engt

N 2, using insertion sort
N 4, using insertion sort

N 8, using insertion sort

® Sort 2 sublists of length n/2, using insertion sort

® Sort 1 sublist of length n, using insertion sort




Fr-64: Merge Sort

® Base Case:
e Alist of length 1 or length O is already sorted

® Recursive Case:
e Split the list in half
* Recursively sort two halves
* Merge sorted halves together

Example: 51826437




Fr-65: Divide & Conquer

Quick Sort:

® Divide the list two parts

 Some work required — Small elements in left
sublist, large elements in right sublist

® Recursively sort two parts

® Combine sorted lists into one list
* No work required!




Fr-66: QUick Sort

® Pick a pivot element

® Reorder the list:
e All elements < pivot
* Pivot element
e All elements > pivot

® Recursively sort elements < pivot
® Recursively sort elements > pivot

Example: 3728146




Fr-67: Comparison Sorting

® Comparison sorts work by comparing elements
 Can only compare 2 elements at a time
e Check for <, >, =.

® All the sorts we have seen so far (Insertion, Quick,
Merge, Heap, etc.) are comparison sorts

® |f we know nothing about the list to be sorted, we
need to use a comparison sort




Fr-68: O0rting Lower Bound

® All comparison sorting algorithms can be
represented by a decision tree with n! leaves

® Worst-case number of comparisons required by a
sorting algorithm represented by a decision tree is
the height of the tree

® A decision tree with n! leaves must have a height
of at least nlgn

® All comparison sorting algorithms have worst-case
running time Q2(nlgn)




FrR-69: BINnsort

® Sortn elements, intherange 1...m

® Keep a list of m linked lists

® |nsert each element into the appropriate linked lists
® (Collect the lists together




Fr-70: Bucket Sort

® Modify binsort so thtat each list can hold a range of
values

® Need to keep each bucket sorted




Fr-71: Counting Sort

for(i=0; i<A.length; i++)
C[A[i] .key () ]++;

for(i=1; i<C.length; i++)
Cli] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {
BIC[A[i] .key()]1] = A[i]l;
C[A[i] .key (O ]1--;

t

for (i=0; i<A.length; i++)
Al[i] = B[i];




Fr-72: Radix Sort

® Sort a list of numbers one digit at a time
e Sort by 1st digit, then 2nd digit, etc

® Each sort can be done in linear time, using
counting sort

® First Try: Sort by most significant digit, then the
next most significant digit, and so on

* Need to keep track of a lot of sublists




Fr-73: Radix Sort

Second Try:
® Sort by least significant digit first

® Then sort by next-least significant digit, using a
Stable sort

® Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted.




Fr-7a: Searching & Selecting

® Maintian a Database (keys and associated data)

® QOperations:
 Add a key / value pair to the database

* Remove a key (and associated value) from the
database

* Find the value associated with a key




Fr-75: Hash Function

® What if we had a “magic function” —
* Takes a key as input
* Returns the index in the array where the key
can be found, if the key Is in the array
® To add an element

e Put the key through the magic function, to get a
location

e Store element in that location

® To find an element

e Put the key through the magic function, to get a
location

e See if the key Is stored in that location




Fr-76: Hash Function

® The “magic function” is called a Hash function

® |f hash(key) = i, we say that the key hashes to
the value i

® We'd like to ensure that different keys will always
hash to different values.

® Not possible — too many possible keys




Fr-77: Integer Hash Function

® When two keys hash to the same value, a collision
OCCuUrs.

® \We cannot avoid collisions, but we can minimize

them by picking a hash function that distributes
keys evenly through the array.

® Example: Keys are integers
e Keysareinrange 1...m
 Array indicesareinrange 1...n
*n << m

® hash(k) = kmodn




Fr-78: String Hash Function

® Hash tables are usually used to store string values

® |[f we can convert a string into an integer, we can
use the integer hash function

® How can we convert a string into an integer?
e Concatenate ASCII digits together

keysize—1

Z key[k] « 256keysz’ze—k—1
k=0




Fr-79: String Hash Function

® Concatenating digits does not work, since numbers
get big too fast. Solutions:

e QOverlap digits a little (use base of 32 instead of
256)

* |gnore early characters (shift them off the left
side of the string)

static long hash(String key, int tablesize) {
long h = O;
int 1;
for (i=0; i<key.length(); i++)
h = (h << 4) + (int) key.charAt(i);
return h 7, tablesize;




Fr-80: EIfHash

® For each new character, the hash value is shifted
to the left, and the new character is added to the

accumulated value.
® |f the string is long, the early characters will “fall
off” the end of the hash value when it is shifted
e Early characters will not affect the hash value of
large strings

® |nstead of falling off the end of the string, the most
significant bits can be shifted to the middle of the

string, and XOR’ed.

® Every character will influence the value of the hash
function.




Fr-s1: Collisions

® When two keys hash to the same value, a collision
occurs

® A collision strategy tells us what to do when a
collision occurs
® Two basic collision strategies:

 Open Hashing (Closed Addressing, Separate
Chaining)

e Closed Hashing (Open Addressing)




Fr-82: Closed Hashing

® o add element X to a closed hash table:

* Find the smallest I, such that Array[hash(x) +
f(1)] is empty (wrap around if necessary)

e Add X to Array[hash(x) + f(i)]
e If (i) = i, linear probing




Fr-83: Closed Hashing

® Quadradic probing
* Find the smallest I, such that Array[hash(x) +
f(1)] Is empty
 Add X to Array[hash(x) + f(i)]
o f(i) = ¢




Fr-8a: Closed Hashing

® Multiple keys hash to the same element
e Secondary clustering

® Double Hashing

e Use a secondary hash function to determine
how far ahead to look

e f(i) = i * hash2(key)




Fr-85: Disjoint Sets

® Elements will be integers (for now)

® QOperations:

e CreateSets(n) — Create n sets, for integers
0..(n-1)

* Union(x,y) — merge the set containing x and the
set containing y

* Find(x) — return a representation of x’s set
- Find(x) = Find(y) iff x,y are in the same set




rFr-86: Implementing Disjoint Sets

® Find: (pseudo-Java)

int Find(x) A{
while (Parent[x] > 0)
x = Parent [x]
return x

¥




rFr-87: Implementing Disjoint Sets

® Union(x,y) (pseudo-Java)

void Union(x,y) {
rootx = Find(x);
rooty = Find(y);
Parent [rootx] = Parent[rooty];

¥




Fr-8s: Union by Rank

® When we merge two sets:
* Have the shorter tree point to the taller tree
* Height of taller tree does not change
* |f trees have the same height, choose arbitrarily




Fr-89: Path Compression

® After each call to Find (x), change x’s parent
pointer to point directly at root

® Also, change all parent pointers on path from x to
root




Fr-90: Graphs

® A graph consists of:

* A set of nodes or vertices (terms are
iInterchangable)

* A set of edges or arcs (terms are
interchangable)

® Edges in graph can be either directed or undirected




Fr91: Graphs & Edges

® Edges can be labeled or unlabeled

* Edge labels are typically the cost assoctiated
with an edge

* e.9., Nodes are cities, edges are roads
between cities, edge label is the length of road




Fr92: Graph Representations

® Adjacency Matrix

® Represent a graph with a two-dimensional array G

e (G|1]|y] = 1 if there is an edge from node i to
node j

e (7|1]|7] = O if there is no edge from node i to
node J

® |f graph is undirected, matrix is symmetric

® Can represent edges labeled with a cost as well:
e (7|i][j] = cost of link between i and j
e If there is no direct link, G|i][j] = o0




Fr-93: Adjacency Matrix

® Examples:
0 1
0 1
0 0|1
2 3 11110
2101
311

OO =IO M

OO0 == W




Fr-94: Adjacency Matrix

® Examples:
0= =1
Y 0 1
001
2 3 111]0
2100
310

OO =IO M

OO =IO W




Fr95: Graph Representations

® Adjacency List
® Maintain a linked-list of the neighbors of every
vertex.
* n vertices
* Array of n lists, one per vertex

e Each list 2 contains a list of all vertices adjacent
to .




Fr-96: Adjacency List

® Examples:

0 > 1

w N P O

' 3




Fr-97: Adjacency List

® Examples:

' ¥ v ¥

w N P O
|

N [|W O ||

2 3

® Note — lists are not always sorted




Fr-98: Topological Sort

® Directed Acyclic Graph, Vertices v; ... v,

® Create an ordering of the vertices

* |f there a path from v; to v;, then v; appears
before v; in the ordering

® Example: Prerequisite chains




Fr-99: Topological Sort

® Pick a node v, with no incident edges

® Add v, to the ordering

® Remove v, and all edges from v, from the graph
® Repeat until all nodes are picked.




rr-100: Graph Traversals

® \isit every vertex, in an order defined by the
topololgy of the graph.
® Two major traversals:
e Depth First Search
e Breadth First Search




rr-101: Depth First Search

® Starting from a specific node (pseudo-code):

DFS(Edge G[], int vertex, boolean Visited[]) {
Visited[vertex] = true;
for each node w adajcent to vertex:
if (!'Visited[w])
DFS(G, w, Visited);




rr-102: Depth First Search

class Edge A
public int neighbor;

public 1nt next;

void DFS(Edge G[], int vertex, boolean Visited[]) {
Edge tmp;
Visited[vertex] = true;
for (tmp = Glvertex]; tmp != null; tmp = tmp.next) {
if (!Visited[tmp.neighbor])
DFS(G, tmp.neighbor, Visited);




Fr-103: Breadth First Search

® DFS: Look as Deep as possible, before looking
wide
 Examine all descendants of a node, before
looking at siblings

® BFS: Look as Wide as possible, before looking
deep

e Visit all nodes 1 away, then 2 away, then three
away, and so on




Fr-104: Search Trees

® Describes the order that nodes are examined in a
traversal
® Directed Tree

 Directed edge from v, to v, if the edge (v, v5)
was followed during the traversal




Fr-105: Computing Shortest Path

® Given a directed weighted graph & (all weights
non-negative) and two vertices x and vy, find the
least-cost path from x to y in G.

* Undirected graph is a special case of a directed
graph, with symmetric edges
® | east-cost path may not be the path containing the
fewest edges
e “shortest path” == “least cost path”

* “path containing fewest edges” = “path
containing fewest edges”




Fr-106: Slngle Source Shortest Path

® |f all edges have unit weight,

® We can use Breadth First Search to compute the
shortest path

® BFS Spanning Tree contains shortest path to each
node in the graph

e Need to do some more work to create & save
BFS spanning tree

® \When edges have differing weights, this obviously
will not work




Fr-107: Single Source Shortest Path

® Divide the vertices into two sets:

* Vertices whose shortest path from the initial
vertex is known

* Vertices whose shortest path from the initial
vertex Is not known

® |nitially, only the initial vertex is known

® Move vertices one at a time from the unknown set
to the known set, until all vertices are known




Fr-108: Dijkstra’s Algorithm

® Keep a table that contains, for each vertex
e |s the distance to that vertex known?
e What is the best distance we’ve found so far?

® Repeat:
e Pick the smallest unknown distance

e mark it as known

e update the distance of all unknown neighbors of
that node

® Until all vertices are known




FR-109: Spanning Trees

® Given a connected, undirected graph G

e A subgraph of GG contains a subset of the
vertices and edges in GG

e A Spanning Tree T of G is:
- subgraph of ¢
- contains all vertices in GG
- connected
« acyclic




Fr-110: Spanning Tree Examples

NS\
NN




Fr-111: Spanning Tree Examples

® Spanning Tree

0 1




rFr-112: Minimal Cost Spanning Tree

® Minimal Cost Spanning Tree
* Given a weighted, undirected graph G

e Spanning tree of G which minimizes the sum of
all weights on edges of spanning tree




Fr-113: Kruskal’s Algorithm

® Start with an empty graph (no edges)
® Sort the edges by cost

® For each edge e (in increasing order of cost)
 Add e to G if it would not cause a cycle




Fr-114: Kruskal’s Algorithm

® \We need to:
e Put each vertex in its own tree

e Given any two vertices v, and v,, determine if
they are in the same tree

e (GGiven any two vertices v; and vy, merge the
tree containing v, and the tree containing v

® . sound familiar?




Fr-115: Kruskal’s Algorithm

® Disjoint sets!
® Create a list of all edges
® Sort list of edges

® For each edge e = (v, v,) in the list

e if FIND(v;) != FIND(v,)
- Add e to spanning tree
° UNION(Ul,Ug)




Fr-116: Prim’s Algorithm

® Grow that spanning tree out from an initial vertex

® Divide the graph into two sets of vertices
* vertices in the spanning tree
e vertices not in the spanning tree
® |nitially, Start vertex is in the spanning tree, all
other vertices are not in the tree
* Pick the initial vertex arbitrarily




Fr-117: Prim’s Algorithm

® While there are vertices not in the spanning tree
e Add the cheapest vertex to the spanning tree




Fr-118: Indexing

® QOperations:
* Add an element
* Remove an element
* Find an element, using a key
* Find all elements in a range of key values




FR-119: 2-3 ITrees

® Generalized Binary Search Tree
 Each node has 1 or 2 keys

* Each (non-leaf) node has 2-3 children
 hence the name, 2-3 Trees

* All leaves are at the same depth




Fr-120: FInding in 2-3 Trees

® How can we find an element in a 2-3 tree?
* |If the tree is empty, return false
e |f the element is stored at the root, return true

e Otherwise, recursively find in the appropriate
subtree




Fr-121: Inserting into 2-3 Trees

® Always insert at the leaves

® o insert an element:

e Find the leaf where the element would live, if it
was in the tree

e Add the element to that leaf
- What if the leaf already has 2 elements?
- Split!




Fr-122: SPplitting nodes

® Jo split a node in a 2-3 tree that has 3 elements:

e Split nodes into two nodes
- One node contains the smallest element
- Other node contains the largest element

* Add median element to parent
- Parent can then handle the extra pointer




Fr-123: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1




Fr-124: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2




Fr-125: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split




Fr-126: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

RN

1 3




Fr-127: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

7N

1 3 4




Fr-128: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

2\

RN

1 345

Too many keys,
need to split




Fr-120: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

SN

1 3 S




Fr-130: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

N

1 3 5 6




Fr-131: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

N

1 3 5 6 7

Too many keys
need to split




Fr-132: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

Too many keys
need to split

2 4 B~

YA N

1 3 S 7




Fr-133: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

/2/
SN\

L 4




Fr-134: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

L 4

/2/\
/N




Fr-135: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

/2////
SN/

1 3 5 /7 89

4\

Too many keys
need to split




Fr-136: 2-3 Tree Example

® |nserting elements 1-9 (in order) into a 2-3 tree

L 4 N

TN

/2\

/TN




Fr-137: Deleting Leaves

® |f leaf contains 2 keys
e Can safely remove a key




Fr-138: Deleting Leaves

RN

® Deleting 7




Fr-139: Deleting Leaves

/AN

3 5 11

® Deleting 7




Fr-140: Deleting Leaves

® |f leaf contains 1 key
e Cannot remove key without making leaf empty
e Try to steal extra key from sibling




Fr-141: Deleting Leaves

I

5 / 11

(448 >

® Steal key from sibling through parent




Fr-142: Deleting Leaves

/AN

/ 11

® Steal key from sibling through parent




Fr-143: Deleting Leaves

® |f leaf contains 1 key, and no sibling contains extra
keys
e Cannot remove key without making leaf empty
e Cannot steal a key from a sibling
* Merge with sibling
- split in reverse




Fr-144: Merging Nodes

FICE
/T

4 / 11

® Removing the 4




Fr-145: Merging Nodes

FICE
/T

/ 11

® Removing the 4
® Combine 5, 7 into one node




rFr-146: Deleting Interior Keys

® How can we delete keys from non-leaf nodes?

* Replace key with smallest element subtree to
right of key

e Recursivly delete smallest element from
subtree to right of key

® (can also use largest element in subtree to left of
key)




rFr-147: Deleting Interior Keys

L 4\

/2/\
/N

1 3 5 6 8 9

® Deleting the 4




rFr-148: Deleting Interior Keys

/Z/i_\!\
/N N

1 3 |5 8 9

® Deleting the 4
® Replace 4 with smallest element in tree to right of 4




Fr-149: Deleting Interior Keys

L 5N

/2/\
/N




Fr-150: Deleting Interior Keys

L 5N

/2/\
/N

1 3 6 8 9

® Deleting the 5




rFr-151: Deleting Interior Keys

//2\ /7

N
1 3 }j 8 9
® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5

5




rFr-152: Deleting Interior Keys

2/,6\\
PARRVAN

® Deleting the 5

® Replace the 5 with the smallest element in tree to
right of 5

® Node with two few keys




rFr-153: Deleting Interior Keys

'

/2\

/

1

\

L 6 N

3

s

[\

[89

® Node with two few keys
® Steal a key from a sibling




Fr-154: Deleting Interior Keys

L 6\

/2/\
/N

1 3 / 9




Fr-155: Deleting Interior Keys

10

) 2

/

1
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/’
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/11

\
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® Removing the 6

9

12

\

13




rFr-156: Deleting Interior Keys

,2/%6 10\\
N N A

1 3 [z] 9 12 13

® Removing the 6

® Replace the 6 with the smallest element in the tree
to the right of the 6




rFr-157: Deleting Interior Keys

/’

2\

/

1

\

10

3

/
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/11

\
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9
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® Node with too few keys

e Can'’t steal key from sibling

* Merge with sibling

\

13




rFr-158: Deleting Interior Keys

2/,7 10 \
/ 7\ /\

1 3 38 9 12

® Node with too few keys
e Can'’t steal key from sibling
* Merge with sibling
 (arbitrarily pick right sibling to merge with)




Fr-159: Deleting Interior Keys
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Fr-160: Generalizing 2-3 Trees

® |n 2-3 Trees:
e Each node has 1 or 2 keys
e Each interior node has 2 or 3 children

® We can generalize 2-3 trees to allow more keys /
node




FR-161: B-Trees

® A B-Tree of maximum degree K:
e All interior nodes have [k/2] ...k children
e All nodes have [k/2] — 1. ..k — 1 keys

® 2-3 Tree is a B-Tree of maximum degree 3




FrR-162: B-Trees

///5/ —+ Q\\

1 3 /7 8 9 12 15 17 18 22

® B-Tree with maximum degree 5
* |nterior nodes have 3 — 5 children
* All nodes have 2-4 keys




Fr-163: Connected Components

® Subgraph (subset of the vertices) that is strongly
connected.




Fr-164: Connected Components

® Subgraph (subset of the vertices) that is strongly
connected.

g 7

5

7y A\!\A
: v
6




Fr-165: Connected Components

® Subgraph (subset of the vertices) that is strongly
connected.




Fr-166: Connected Components

® Subgraph (subset of the vertices) that is strongly
connected.

1 > 3 A5 > 7

LN




Fr-167: DFS Revisited

® We can keep track of the order in which we visit
the elements in a Depth-First Search
® For any vertex vin a DFS:
e d[v] = Discovery time — when the vertex is first
visited
* f[v] = Finishing time — when we have finished
with a vertex (and all of its children




Fr-168: DFS Revisited

class Edge {
public int neighbor;

public int next;

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {
Edge tmp;
Visited[vertex] = true;
d[vertex] = time++;
for (tmp = G[lvertex]; tmp != null; tmp = tmp.next) {
if (!'Visited[tmp.neighbor])
DFS(G, tmp.neighbor, Visited);
+

f[vertex] = time++;




Fr-160: DFS Example




Fr-170: DFS Example
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Fr-171: DFS Example
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Fr-172. DFS Example
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d 1 d
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1 > 3
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Fr-173: DFS Example
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Fr-172: DFS Example
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Fr-175: DFS Example
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Fr-176: DFS Example
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Fr-177: DFS Example
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Fr-178: DFS Example
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Fr-179: DFS Example
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Fr-180: DFS Example
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Fr-181: DFS Example
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Fr-182. DFS Example
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Fr-183: DFS Example
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Fr-18a: DFS Example
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Fr-185: DFS Example
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Fr-186: DFS Example
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rFr-187: Using d[] & f[]

® (Given two vertices v; and v,, what do we know if
flua] < flon]?
e Either:
- Path from (] fo ()

e Start from v,

e Eventually visit v,

e Finish ()

e Finish (]




Fr-188: Using d[] & f[]

® (Given two vertices v; and v,, what do we know if

flva] < flu]?
e Either:

- Path from (] fo ()

« No path from vy to v,
e Start from v,
e Eventually finish v,
e Start from v,
e Eventually finish v,




Fr-189: Using d[] & f[]

® If flus] < flunl:
e Either a path from v, to v, or no path from v, to
(%]

* |f there is a path from v, to v, then there must
be a path from v, to v

® flu] < flv,] and a path from v, to v; = v; and v,
are in the same connected component




Fr-190: Connected Components

® Run DFS on &, calculating f[] times
e Compute G*

® Run DFS on G' — examining nodes in inverse
order of finishing times from first DFS

® Any nodes that are in the same DFS search tree in
G'* must be in the same connected component




Fr-191: Dynamic Programming

® Simple, recursive solution to a problem
® Nalive solution recalculates same value many times
® | eads to exponential running time




Fr-192: Dynamic Programming

® Recalculating values can lead to unacceptable run
times

* Even if the total number of values that needs to
be calculated is small
® Solution: Don’t recalculate values
e Calculate each value once
e Store results in a table
e Use the table to calculate larger results




Fr-193: Faster Fibonacci

int Fibonacci(int n) {
int[] FIB = new int[n+1];

FIB[O]
FIB[1]

1,
1;

for (i=2; i<=n; i++)
FIB[i] = FIB[i-1] + FIB[i-2];

return FIB[n];
}




Fr-194: Dynamic Programming

® Jo create a dynamic programming solution to a
problem:

e Create a simple recursive solution (that may
require a large number of repeat calculations

* Design a table to hold partial results

e Fill the table such that whenever a partial result
IS needed, it is already in the table




Fr-195: Memoization

® Can be difficult to determine order to fill the table

® We can use a table together with recursive solution
* |nitialize table with sentinel value

* |n recursive function:
» Check table — if entry Is there, use it
- Otherwise, call function recursively
Set appropriate table value
return table value




Fr-196: Fibonacci Memoized

int Fibonacci(int n) A

if (n == 0)
return 1;

if (n == 1)
return 1;

if (T[n] == -1)
T[n] = Fibonacci(n-1) + Fibonacci(n-2);

return T[n];

¥
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