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o1-0: Syllabus

® Office Hours
® Course Text
® Prerequisites

® Test Dates & Testing Policies
e Check dates now!

® Grading Policies




01-1: How to Succeed

® Come to class. Pay attention. Ask questions.




01-22 How to Succeed

® Come to class. Pay attention. Ask questions.
* A question as vague as “l don't get it” is
perfectly acceptable.

* |f you're confused, at least 2 other people are,
too.




01-3: How to Succeed

® Come to class. Pay attention. Ask questions.

* A question as vague as “l don't get it” is
perfectly acceptable.

* |If you're confused, at least 2 other people are,
too.
® Come by my office
* | am very available to students.




01-4: How to Succeed

® Come to class. Pay attention. Ask questions.

* A question as vague as “l don't get it” is
perfectly acceptable.

* |If you're confused, at least 2 other people are,
too.
® Come by my office
* | am very available to students.

® Start the homework assignments early
* Homework in this class requires “thinking time”




01-5: HOw to Succeed

® Come to class. Pay attention. Ask questions.

* A question as vague as “l don't get it” is
perfectly acceptable.

* |If you're confused, at least 2 other people are,
too.
® Come by my office
* | am very available to students.

® Start the homework assignments early
* Homework in this class requires “thinking time”

® Read the textbook.

* Ask Questions! The textbook can be hard to
follow —reading a dense, technical work is a
“learning outcome” for this class




01-6: Class Goals

® Prove that there are some problems that cannot be
solved

® Show that there are some problems that (are
believed to) require an exponential amount of time

to solve (NP-Complete)
 Examine some strategies for dealing with these
problems
® Along the way, learn how to model computation

mathematically, and pick up some useful
formalisms & techniques

 DFA, regular expressions, CFGs, etc.




01-7:. Review of the Basics

® Most (but perhaps not all) of the following material
IS review from discrete mathematics

® | will go fairly fast, assuming it is review
* Ask me to slow down if you have any questions!




01-8: Sets — Definition

® A set is an unordered collection of objects
® S={a,b,c}
* a, b, c are elements or members of the set S




01-9: Sets — Definition

® A set is an unordered collection of objects
® S={a,b,c}
* a, b, c are elements or members of the set S

® Elements in a set need have no relation to each
other

¢ Sl {1, ,3}
e S, ={red, farmhouse, 7, -32 }




o1-10: Sets — Definition

® Sets can contain other sets as elements
* 51 =1{3,{3,4},{4,{5,6}}}
* So={{L,2}, {{4}}}

® Sets do not contain duplicates
* NotASet = {4, 2, 4, 5}




o1-11: Sets — Cardinality

® Cardinality of a set is the number of elements in
the set

y |{CL, b, C}| =3
y |{{CL, b},C}| =




o1-12: Sets — Cardinality

® Cardinality of a set is the number of elements in
the set

y |{CL, b, C}| =3
e [{{a,b},c}| =2 ({a,b} and c)




01-13: Sets — Empty, Singleton

® Empty Set: {} or 0, [{}| =10/ =0
® Singleton set — set with one element

* {1}




01-12: Sets — Empty, Singleton

* Empty Set: {} or (), [{}| = [0[ =0
® Singleton set — set with one element
e {1} Singleton
} Singleton
} Not a Singleton (empty)
{}} Singleton

* {4
* {
* {
e {{3, 1, 2}} Singleton




01-15: Sets — Membership

® Set membership: x € S
e 3€{1,3,5}
e a & {b,c,d}
e 3e{1,{2,3}} 7
o {} €{1,2,3}?
* { el {14} 7




01-16: Sets — Membership

® Set membership: x € S
e 3€{1,3,5}
e a & {b,c,d}
* 3¢ {1,{2,3}}
« {} £{1,2,3}
o {} e {L{}.4)




01-17: Sets — Describing

® Referring to sets

e List all members
. {3, 4, 5}, 0,1,2,3,...}

e S ={x:x has acertain property}
S ={x | x has a certain property}
- S={x:xeNAx <10}

N is the set of natural numbers {0, 1, 2, ...}

« S ={x:xisprime }
- AUB={x:2€ AVzx € B}
- ANB={x:x€ ANz € B}
- A-—B={x:x € ANz & B}




01-18: Sets — U, N

® More Union & Intersection
e Aand B are disjoint if AN B = {}
e S is a collection of sets (set of sets)
JS ={xz:x € Aforsome A € S}
: U{{lv 2}7 {27 3}} — {17 2, 3}
NS ={x:xz € Aforall A € S}

‘ ﬂ{{lv 2}7 {273}} — {2}




01-19: Sets — Subset

® Subsets & Supersets

e Aisasubsetof B, A C B if:
Ve,xr €A — x€B
- V(rxe A),xr € B
e Ais a proper subset of B, A C B if:
- ACBA(dz,x e BAx & A)
e {} Is a subset of any set (including itself)

e {} is the only set that does not have a proper
subset




01-20: Sets — Power Set

® Power set: Set of all subsets
® 2°={y:2xCS}

o Qtab} — 9

e 21} — 7
® |25 =7




01-21: Sets — Power Set

® Power set: Set of all subsets

® 2°={y:2xCS}
e 210% = {{},{a}, {0}, {a, b}}
« 2 = {{}}

® |2°] = 25|




01-22: Sets — Partition

IT is a partition of S if:

o [[ C2°
° {} £1I
o V(X,)Yell),X#A#Y = XnNnY ={}
o | JII =S5

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}

{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}




01-23: Sets — Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

® All the partitions of the set {a, b, c}?




01-24: Sets — Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

® All the partitions of the set {a, b, c}?

* 118, b, cj}, {{a, b}, {c}}, {1a, ¢}, (b}, 1ahib, cil,
(1a}, b}, {C}}




01-25: Ordered Pair

® (x,y)is an ordered pair
® Order matters — (z,y) # (y,x) if x # y
* hence ordered

® r and y are the components of the ordered pair
(z,y)




01-26: Cartesian Product

AxB={(z,y):x € ANy € B}

o {1,2} x {3,4} = {(1,3), (1,4), (2,3), (2,4)}
o {1,2} x {1,2} =7

o Qlapx{b} _ 9
® 21a; y IO} — 9




01-27: Cartesian Product

AxB={(z,y):x € ANy € B}

* 2” W= {{(a, b)}a{}}

® 214 y b} _

(et 103), e, 1), (U 103), (1 1)1




01-28: Cartesian Product

Which of the following is true:
®* V(A,B) AxXxB=BxA

®* V(A,B) AxXxB+#BxA
® None of the above




01-29: Cartesian Product

Which of the following is true:

®* V(A,B) AxXxB=BxA
e fandonlyif A=0B

®* V(A,B) AXB#BxA
e fandonlyif A # B




01-30: Cartesian Product

® Why “Cartesian™?

* Think “Cartesian Coordinates” (standard
coordinate system)

* R x R is the real plane
- Set of all points (z,y) where x,y € R
« R is the set of real numbers (think “floats” if
you're CS)




01-31: Cartesian Product

® Can take the Cartesian product of > 2 sets.
* AxBxC={(x,y,z):x € A,y B,z € (C}
® {a} x {b,c} x {d} = {(a,b,d), (a,c,d)}
® (Techinally, A x Bx C' = (A x B) x ()
* {a} x{b,c; x{d} = {((a,b),d), ((a,¢),d)}

e Often drop the extra parentheses for readability




01-32: Relations

® Arelation R is a set of ordered pairs

® For example the relation < over the Natural
Numbers is the set:

{ (0,1), (0,2), (0,3), ...
(1,2), (1,3), (1,4), ...
(2,3), (2,4), (2,9), ...

}




01-33: Relations

® (Often, relations are over the same set
e that is, a subset of A x A for some set A

® Not all relations are over the same set, however

* Relation describing prices of computer
components
{(Hard dive, $55), (WAP, $49), (2G DDR, $44),

)




01-34: Functions

® A function is a special kind of relation (all
functions are relations, but not all relations are
functions)

® A relation R C A x B is a function if:

e For each a € A, there is exactly one ordered
pair in R with the first component a




01-35: Functions

® A function f that is a subset of A x B is written:
f:A— B
e (a,b) € fiswritten f(a) =b
e A is the domain of the function
e if A/CA, f(A)={b:ac AN f(a) =0} is
the image of A’

* The range of a function is the image of its
domain




01-36: Functions

A function f : A+— Bis:
® one-to-one if no two elements in A match to the
same element in B

® onto Each element in B is mapped to by at least
one element in A

® a bijection if it is both one-to-one and onto

The inverse of a binary relation R C A x B is denoted
R, and defined to be {(b,a) : (a,b) € R}

® A function only has an inverse if ...




01-37: Functions

A function f : A+— Bis:
® one-to-one if no two elements in A match to the
same element in B

® onto Each element in B is mapped to by at least
one element in A

® a bijection if it is both one-to-one and onto

The inverse of a binary relation R C A x B is denoted
R, and defined to be {(b,a) : (a,b) € R}

® A function only has an inverse if it is a bijection




01-38: Functions

® \What if we want to take the inverse of a function
that is not a bijection — what can we do?

 Want to preserve full information about the
original function

e Resulting inverse must be an actual function




01-39: Functions

® \What if we want to take the inverse of a function
that is not a bijection — what can we do?

 Want to preserve full information about the
original function

e Resulting inverse must be an actual function
® How can we have an element map to O, 1, or more

elements, and still have a function? HINT': If we
modzified the range ...




01-40: Functions

® \What if we want to take the inverse of a function
that is not a bijection — what can we do?

 Want to preserve full information about the
original function

e Resulting inverse must be an actual function
e f.:A— B f~1:B— 24

(example on chalkboard)




01-41: Relations

® () and R are two relations

® The composition of () and R, () o R is:
{(a,b) : (a,c) € Q,(c,b) € R for some c}

Q =1(a,c),(b,d),(c,a)}
R = {(a,¢),(b¢),(c,a)}
QOR:{( )7(070)}
0oQ?  (QoR)oQ?




o1-42: Relation Graph

® Fach element is a node in the graph

® if (a,b) € R, then there is an edge from a to b in
the graph

R = {(av b)v (av C)v (Ca a’)v (bv b)7 (bv d)}




01-43: Relation Types

® A relation R C A x A is reflexive if
* (a,a) € Rforeacha € A
e V(a € A),(a,a) € R
e Each node has a self loop

& -2 @
Qc/& L/d

Reflexive Not Reflexive

b




o1-44: Relation Types

® Arelation R C A x A is symmetric if
e (a,b) € Rwhenever (b,a) € R
* (a,b) e R = (b,a) € R
e Every edge goes “both ways”

Symmetric Not Symmeteric




01-45: Relation Types

® Arelation R C A x Ais antisymmetric if
e whenever (a,b) € R, a,b are distinct (b,a) € R
e (a,b) e RNa#b = (ba) € R
* No edge goes “both ways”

& -2 @
C><d L/

Antisymmetric Not Antisymmeteric

o ——J ey

® Can a relation be neither symmetric nor
antisymmetric?




o1-46: Relation Types

® Arelation R C A x Ais antisymmetric if
e whenever (a,b) € R, a,b are distinct (b,a) € R
e (a,b) e RNa#b = (ba) € R
* No edge goes “both ways”

& -2 @
C><d L/

Antisymmetric Not Antisymmeteric

o ——J ey

® Can a relation be both symmetric and
antisymmetric?




01-47: Relation Types

® A relation R C A x A is transitive if
e whenever (a,b) € R,and (b,c) € R, (a,c) € R
e (a,b) e RAN(b,c) e R = (a,c) € R
e Every path of length 2 has a direct edge

|~

~d

b

<

Transitive Not Transitive

O «——T




o1-48: Closure

® Aset A C B isclosed under a relation
R C ((B x B) x B)if:

¢ CLl,CLQGA/\((a,l,aQ),C) e R — CEA

e Thatis, if a; and a, are both in A4, and
((a1,as),c) isin the relation, then cis also in A

® N s closed under addtion
® N is not closed under subtraction or division




01-49: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!




01-50: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!

® Example:
e RCAXx A
e R ={(((a,b),(b,c)),(a,c)) :a,b,ce A}
e If Ris closed under R’, then ...




01-51: Closure

® Relations are also sets (of ordered pairs)
® We can talk about a relation R being closed over
another relation R’

e Each element of R’ is an ordered triple of
ordered pairs!

® Example:
e RCAXA
e R ={(((a,b),(b,c)),(a,c)):a,bce A}
e If Ris closed under R’, then R is transitive!




01-52: Closure

® Reflexive closure of arelation R C A x A is the
smallest possible superset of R which is reflexive

* Add self-loop to every node in relation
e Add (a,a) to R foreverya € A
® Transitive Closure of arelaton R C A x Ais

the smallest possible superset of R which is
transitive

e Add direct link for every path of length 2.
e V(a,b,ce A)if (a,b) € RA (b,c) € R add
(a,c) to R.

(examples on board)




01-53: Relation Types

® Equivalence Relation
e Symmetric, Transitive, Reflexive

® Examples:
e Equality (=)

e Ais the set of English words, (w;, w,) € R if w;
and w, start with the same letter

(example graphs)




01-54: Relation Types

® Equivalence Relation
e Symmetric, Transitive, Reflexive

® Separates set into equivalence classes (all words
that start with a, for example

® If a € A, then [a] represents equivalence class that
contains a.




01-55: Relation Types

® Partial Order
* Antisymmetric, Transitive, Reflexive

® Examples:

e < for integers
A is the set of integers, (a,b) € Rifa <b

* Ancestor
R C Ax A={(x,y) : xis an ancestor of y,
or r = vy}

(example graphs)




o1-56: Relation Types

® Total Order

e RC A x Ais a total order if:

- R Is a partial order

- Foralla,b € A, either (a,b) € Ror (b,a) € R
e |s < a total order?
e |s Ancestor a total order?

(example graphs)




01-57: Cardinality

® How can we tell if two sets A and B have the same
cardinality?




o1-58: Cardinality

® How can we tell if two sets A and B have the same
cardinality?
e Calculate |A| and |B
the same

e Match each element in A to an element in B
- Create a bijection f : A— B
(or f : B — A)

, make sure numbers are




o1-50: Cardinality

® What about infinite sets? Are they all
equinumerous (that is, have the same cardinality)?

® A setis countable infinite (or just countable) if
it is equinumerous with IN.




01-60: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e Even elements of N?




01-61: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e Even elements of N?

e f(x)=2x




01-62: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Integers (Z)?




01-63: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Integers (Z)?

* flz) =[5+ (=1)°




01-64: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Union of 3 (disjoint) countable sets A, B, C?




01-65: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Union of 3 (disjoint) countable sets A, B, C?

ar A1 a2 ds a4 ...

bo bl b: bs bs ...

Co C1 C2 C3 Ca ...

az ifxmod3=0
e f(x)=14q bz IfXxXmod3=1

3

ca—2 IfXmMod 3 =2

3

w8




01-66: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e N x N?
(0,00 (0,1) (0,2) (0,3) (0,4) ..

(1,00 (1,1 (1,2) (1,3) (14) ..
(2,00 (2,1) (2,2) 23 (24) ..
3,00 3,1 32 33 B4 ..

(4,00 4,1) (42) 43 (“44) ..




01-67: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

e N x N?

0,0 0, 1) (5,2) (2,3) (5,4) ..
(1,0) (L, (L,2) (1,3) (1,4) ..
(2,0) (2,1) (2,2) 2,3) (24) ..
3,09 @R 32 33 B4 ..

4,0) 4,1 42) 43 (“44) ..

* f((w,y) =




01-68: Countable Sets

® A setis countable infinite (or just countable) if
it is equinumerous with IN.

* Real numbers between 0 and 1 (exclusive)?




01-69: Uncountable R

® Proof by contradiction

e Assume that iR between 0 and 1 (exclusive) is
countable
- (that is, assume that there is some bijection
from N to R between 0 and 1)

e Show that this leads to a contradiction
- Find some element of R between 0 and 1
that is not mapped to by any element in N




01-zo: Uncountable R

® Assume that there is some bijection from N to R
between 0 and 1

0.3412315569...
0.0123506541...
0.1143216751...
0.2839143215...
0.2311459412...
0.8381441234...
0.7415296413...

OBk WN RO




01-71: Uncountable R

® Assume that there is some bijection from N to R
between 0 and 1

0.3412315569...
0.0123506541...
0.1142216751...
0.2829143215...
0.2311459412...
0.8381441234...
0.7415296413...

OOk WNRHRO

Consider: 0.425055...




01-72: Proof Techniques

® Three basic proof techniques used in this class
* Induction
e Diagonalization
* Pigeonhole Principle




01-73: Induction

Can create exact postage for any amount > $0.08
using only 3 cent and 5 cent stamps




01-74: Induction

Can create exact postage for any amount > $0.08
using only 3 cent and 5 cent stamps

® Base case

Can create postage for 0.08 using one 5-cent and one
3-cent stamp




01-75: Induction

Can create exact postage for any amount > $0.08
using only 3 cent and 5 cent stamps

® |nductive case

e To show: if we can create exact postage for $x
using only 3-cent and 5-cent stamps, we can
create exact postage for $x + $0.01 using
3-cent and 5-cent stamps

* [wo cases:
- Exact postage for $x uses at least one 5-cent
stamp
- Exact postage for $x uses no 5-cent stamps




01-76: Induction

® To show: if we can create exact postage for $x
using only 3-cent and 5-cent stamps, we can
create exact postage for $x + $0.01 using 3-cent
and 5-cent stamps

e Exact postage for $x uses at least one 5-cent
stamp
- Replace a 5-cent stamp with two 3-cent
stamps to get $x + $0.01

e Exact postage for $x uses no 5-cent stamps
- Replace three 3-cent stamps with two 5-cent
stamps to get $ + $0.01




01-77: Pigeonhole Principle

* A, B are finite sets, with |A| > | B|, then there is
no one-to-one function from A to B

® |f you have n pigeonholes, and > n pigeons, and
every pigeon is in a pigeonhole, there must be at
least one hole with > 1 pigeon.




o1-78: Pigeonhole Principle

® Show that in a relation R over a set A, if there is a
path from q, to a, in R, then there is a path from a

to b whose length is at most | A]|.




01-79: Pigeonhole Principle

Proof by Contradiction

® Assume that there exists some shortest path from
a; (0] Q; of |ength > ’A‘
® By pigeonhole principle, some element must
repeat:
e {a;,...,Qp,...,0a;...05}

® We can create a shorter path by removing
elements between a,s.

® We've just found a shorter path from a, to a, — a
contradiction




	{small lecturenumber -	heblocknumber :} Syllabusaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} How to Succeedaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Goalsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Review of the Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Definitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Cardinalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Cardinalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Empty, Singletonaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Empty, Singletonaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Membershipaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Membershipaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Describingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- $cup ,cap $addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Subsetaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Power Setaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Power Setaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sets -- Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ordered Pairaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cartesian Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closureaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closureaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closureaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closureaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Closureaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cardinalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cardinalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cardinalityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Countable Setsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uncountable $R$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uncountable $R$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Uncountable $R$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Proof Techniquesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Inductionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pigeonhole Principleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pigeonhole Principleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Pigeonhole Principleaddtocounter {blocknumber}{1}

