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01-0: Syllabus

Office Hours

Course Text

Prerequisites

Test Dates & Testing Policies

Check dates now!

Grading Policies



01-1: How to Succeed

Come to class. Pay attention. Ask questions.



01-2: How to Succeed

Come to class. Pay attention. Ask questions.

A question as vague as “I don’t get it” is
perfectly acceptable.

If you’re confused, at least 2 other people are,
too.



01-3: How to Succeed

Come to class. Pay attention. Ask questions.

A question as vague as “I don’t get it” is
perfectly acceptable.

If you’re confused, at least 2 other people are,
too.

Come by my office

I am very available to students.



01-4: How to Succeed

Come to class. Pay attention. Ask questions.

A question as vague as “I don’t get it” is
perfectly acceptable.

If you’re confused, at least 2 other people are,
too.

Come by my office

I am very available to students.

Start the homework assignments early

Homework in this class requires “thinking time”



01-5: How to Succeed

Come to class. Pay attention. Ask questions.

A question as vague as “I don’t get it” is
perfectly acceptable.

If you’re confused, at least 2 other people are,
too.

Come by my office

I am very available to students.

Start the homework assignments early

Homework in this class requires “thinking time”

Read the textbook.

Ask Questions! The textbook can be hard to
follow –reading a dense, technical work is a
“learning outcome” for this class



01-6: Class Goals

Prove that there are some problems that cannot be
solved

Show that there are some problems that (are
believed to) require an exponential amount of time
to solve (NP-Complete)

Examine some strategies for dealing with these
problems

Along the way, learn how to model computation
mathematically, and pick up some useful
formalisms & techniques

DFA, regular expressions, CFGs, etc.



01-7: Review of the Basics

Most (but perhaps not all) of the following material
is review from discrete mathematics

I will go fairly fast, assuming it is review

Ask me to slow down if you have any questions!



01-8: Sets – Definition

A set is an unordered collection of objects

S = {a, b, c}

a, b, c are elements or members of the set S



01-9: Sets – Definition

A set is an unordered collection of objects

S = {a, b, c}

a, b, c are elements or members of the set S

Elements in a set need have no relation to each
other

S1 = {1, 2, 3}

S2 = { red, farmhouse, π, -32 }



01-10: Sets – Definition

Sets can contain other sets as elements

S1 = {3, {3, 4}, {4, {5, 6}}}

S2 = {{1, 2}, {{4}}}

Sets do not contain duplicates

NotASet = {4, 2, 4, 5}



01-11: Sets – Cardinality

Cardinality of a set is the number of elements in
the set

|{a, b, c}| = 3

|{{a, b}, c}| =?



01-12: Sets – Cardinality

Cardinality of a set is the number of elements in
the set

|{a, b, c}| = 3

|{{a, b}, c}| = 2 ({a, b} and c)



01-13: Sets – Empty, Singleton

Empty Set: {} or ∅, |{}| = |∅| = 0

Singleton set – set with one element

{1}

{4}

{} ?

{{}} ?

{{3, 1, 2}} ?



01-14: Sets – Empty, Singleton

Empty Set: {} or ∅, |{}| = |∅| = 0

Singleton set – set with one element

{1} Singleton

{4} Singleton

{} Not a Singleton (empty)

{{}} Singleton

{{3, 1, 2}} Singleton



01-15: Sets – Membership

Set membership: x ∈ S

3 ∈ {1, 3, 5}

a 6∈ {b, c, d}

3 ∈ {1, {2, 3}} ?

{} ∈ {1, 2, 3} ?

{} ∈ {1, {}, 4} ?



01-16: Sets – Membership

Set membership: x ∈ S

3 ∈ {1, 3, 5}

a 6∈ {b, c, d}

3 6∈ {1, {2, 3}}

{} 6∈ {1, 2, 3}

{} ∈ {1, {}, 4}



01-17: Sets – Describing

Referring to sets

List all members
{3, 4, 5}, {0, 1, 2, 3, . . . }

S = {x : x has a certain property}
S = {x | x has a certain property}
S = {x : x ∈ N ∧ x < 10}
N is the set of natural numbers {0, 1, 2, . . . }
S = {x : x is prime }
A ∪B = {x : x ∈ A ∨ x ∈ B}
A ∩B = {x : x ∈ A ∧ x ∈ B}
A− B = {x : x ∈ A ∧ x 6∈ B}



01-18: Sets – ∪,∩

More Union & Intersection

A and B are disjoint if A ∩B = {}

S is a collection of sets (set of sets)
⋃

S = {x : x ∈ A for some A ∈ S}
⋃

{{1, 2}, {2, 3}} = {1, 2, 3}
⋂

S = {x : x ∈ A for all A ∈ S}
⋂

{{1, 2}, {2, 3}} = {2}



01-19: Sets – Subset

Subsets & Supersets

A is a subset of B, A ⊆ B if:
∀x, x ∈ A =⇒ x ∈ B
∀(x ∈ A), x ∈ B

A is a proper subset of B, A ⊂ B if:
A ⊆ B ∧ (∃x, x ∈ B ∧ x 6∈ A)

{} is a subset of any set (including itself)

{} is the only set that does not have a proper
subset



01-20: Sets – Power Set

Power set: Set of all subsets

2S = {x : x ⊆ S}

2{a,b} = ?

2{} = ?

|2S| = ?



01-21: Sets – Power Set

Power set: Set of all subsets

2S = {x : x ⊆ S}

2{a,b} = {{}, {a}, {b}, {a, b}}

2{} = {{}}

|2S| = 2|S|



01-22: Sets – Partition

Π is a partition of S if:

Π ⊂ 2S

{} 6∈ Π

∀(X,Y ∈ Π), X 6= Y =⇒ X ∩ Y = {}
⋃

Π = S

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}
{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}



01-23: Sets – Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

All the partitions of the set {a, b, c}?



01-24: Sets – Partition

In other words, a partition of a set S is just a division
of the elements of S into 1 or more groups.

All the partitions of the set {a, b, c}?

{{a, b, c}}, {{a, b}, {c}}, {{a, c}, {b}}, {{a},{b, c}},
{{a}, {b}, {c}}



01-25: Ordered Pair

(x, y) is an ordered pair

Order matters – (x, y) 6= (y, x) if x 6= y

hence ordered

x and y are the components of the ordered pair
(x, y)



01-26: Cartesian Product

A× B = {(x, y) : x ∈ A ∧ y ∈ B}

{1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}

{1, 2} × {1, 2} = ?

2{a}×{b} = ?

2{a} × 2{b} = ?



01-27: Cartesian Product

A× B = {(x, y) : x ∈ A ∧ y ∈ B}

{1, 2} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4)}

{1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}

2{a}×{b} = {{(a, b)}, {}}

2{a} × 2{b} =
{({a}, {b}), ({a}, {}), ({}, {b}), ({}, {})}



01-28: Cartesian Product

Which of the following is true:

∀(A,B) A× B = B × A

∀(A,B) A× B 6= B × A

None of the above



01-29: Cartesian Product

Which of the following is true:

∀(A,B) A× B = B × A

If and only if A = B

∀(A,B) A× B 6= B × A

If and only if A 6= B



01-30: Cartesian Product

Why “Cartesian”?

Think “Cartesian Coordinates” (standard
coordinate system)

R×R is the real plane
Set of all points (x, y) where x, y ∈ R
R is the set of real numbers (think “floats” if
you’re CS)



01-31: Cartesian Product

Can take the Cartesian product of > 2 sets.

A× B × C = {(x, y, z) : x ∈ A, y ∈ B, z ∈ C}

{a} × {b, c} × {d} = {(a, b, d), (a, c, d)}

(Techinally, A× B × C = (A×B)× C)

{a} × {b, c} × {d} = {((a, b), d), ((a, c), d)}

Often drop the extra parentheses for readability



01-32: Relations

A relation R is a set of ordered pairs

For example the relation < over the Natural
Numbers is the set:

{ (0,1), (0,2), (0,3), ...

(1,2), (1,3), (1,4), ...

(2,3), (2,4), (2,5), ...

... }



01-33: Relations

Often, relations are over the same set

that is, a subset of A× A for some set A

Not all relations are over the same set, however

Relation describing prices of computer
components
{(Hard dive, $55), (WAP, $49), (2G DDR, $44),
. . .}



01-34: Functions

A function is a special kind of relation (all
functions are relations, but not all relations are
functions)

A relation R ⊆ A× B is a function if:

For each a ∈ A, there is exactly one ordered
pair in R with the first component a



01-35: Functions

A function f that is a subset of A× B is written:
f : A 7→ B

(a, b) ∈ f is written f(a) = b

A is the domain of the function

if A′ ⊆ A, f(A′) = {b : a ∈ A′ ∧ f(a) = b} is
the image of A′

The range of a function is the image of its
domain



01-36: Functions

A function f : A 7→ B is:

one-to-one if no two elements in A match to the
same element in B

onto Each element in B is mapped to by at least
one element in A

a bijection if it is both one-to-one and onto

The inverse of a binary relation R ⊂ A×B is denoted
R−1, and defined to be {(b, a) : (a, b) ∈ R}

A function only has an inverse if ...



01-37: Functions

A function f : A 7→ B is:

one-to-one if no two elements in A match to the
same element in B

onto Each element in B is mapped to by at least
one element in A

a bijection if it is both one-to-one and onto

The inverse of a binary relation R ⊂ A×B is denoted
R−1, and defined to be {(b, a) : (a, b) ∈ R}

A function only has an inverse if it is a bijection



01-38: Functions

What if we want to take the inverse of a function
that is not a bijection – what can we do?

Want to preserve full information about the
original function

Resulting inverse must be an actual function



01-39: Functions

What if we want to take the inverse of a function
that is not a bijection – what can we do?

Want to preserve full information about the
original function

Resulting inverse must be an actual function

How can we have an element map to 0, 1, or more
elements, and still have a function? HINT: If we
modified the range ...



01-40: Functions

What if we want to take the inverse of a function
that is not a bijection – what can we do?

Want to preserve full information about the
original function

Resulting inverse must be an actual function

f : A 7→ B f−1 : B 7→ 2A

(example on chalkboard)



01-41: Relations

Q and R are two relations

The composition of Q and R, Q ◦R is:
{(a, b) : (a, c) ∈ Q, (c, b) ∈ R for some c}

Q = {(a, c), (b, d), (c, a)}
R = {(a, c), (b, c), (c, a)}

Q ◦ R = {(a, a), (c, c)}

Q ◦Q ? (Q ◦R) ◦Q?



01-42: Relation Graph

Each element is a node in the graph

if (a, b) ∈ R, then there is an edge from a to b in
the graph

R = {(a, b), (a, c), (c, a), (b, b), (b, d)}

a

b

c

d



01-43: Relation Types

A relation R ⊆ A× A is reflexive if

(a, a) ∈ R for each a ∈ A

∀(a ∈ A), (a, a) ∈ R

Each node has a self loop

a b

c d

a b

c d

Reflexive Not Reflexive



01-44: Relation Types

A relation R ⊆ A× A is symmetric if

(a, b) ∈ R whenever (b, a) ∈ R

(a, b) ∈ R =⇒ (b, a) ∈ R

Every edge goes “both ways”

a b

c d

a b

c d

Symmetric Not Symmeteric



01-45: Relation Types

A relation R ⊆ A× A is antisymmetric if

whenever (a, b) ∈ R, a, b are distinct (b, a) 6∈ R

(a, b) ∈ R ∧ a 6= b =⇒ (b, a) 6∈ R

No edge goes “both ways”

a b

c d

a b

c d

Antisymmetric Not Antisymmeteric

Can a relation be neither symmetric nor
antisymmetric?



01-46: Relation Types

A relation R ⊆ A× A is antisymmetric if

whenever (a, b) ∈ R, a, b are distinct (b, a) 6∈ R

(a, b) ∈ R ∧ a 6= b =⇒ (b, a) 6∈ R

No edge goes “both ways”

a b

c d

a b

c d

Antisymmetric Not Antisymmeteric

Can a relation be both symmetric and
antisymmetric?



01-47: Relation Types

A relation R ⊆ A× A is transitive if

whenever (a, b) ∈ R, and (b, c) ∈ R, (a, c) ∈ R

(a, b) ∈ R ∧ (b, c) ∈ R =⇒ (a, c) ∈ R

Every path of length 2 has a direct edge

a b

c d

a b

c d

Transitive Not Transitive



01-48: Closure

A set A ⊆ B is closed under a relation
R ⊆ ((B × B)× B) if:

a1, a2 ∈ A ∧ ((a1, a2), c) ∈ R =⇒ c ∈ A

That is, if a1 and a2 are both in A, and
((a1, a2), c) is in the relation, then c is also in A

N is closed under addtion

N is not closed under subtraction or division



01-49: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!



01-50: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!

Example:

R ⊆ A×A

R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

If R is closed under R′, then . . .



01-51: Closure

Relations are also sets (of ordered pairs)

We can talk about a relation R being closed over
another relation R′

Each element of R′ is an ordered triple of
ordered pairs!

Example:

R ⊆ A×A

R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

If R is closed under R′, then R is transitive!



01-52: Closure

Reflexive closure of a relation R ⊆ A× A is the
smallest possible superset of R which is reflexive

Add self-loop to every node in relation

Add (a,a) to R for every a ∈ A

Transitive Closure of a relation R ⊆ A× A is
the smallest possible superset of R which is
transitive

Add direct link for every path of length 2.

∀(a, b, c ∈ A) if (a, b) ∈ R ∧ (b, c) ∈ R add

(a, c) to R.

(examples on board)



01-53: Relation Types

Equivalence Relation

Symmetric, Transitive, Reflexive

Examples:

Equality (=)

A is the set of English words, (w1, w2) ∈ R if w1

and w2 start with the same letter

(example graphs)



01-54: Relation Types

Equivalence Relation

Symmetric, Transitive, Reflexive

Separates set into equivalence classes (all words
that start with a, for example

If a ∈ A, then [a] represents equivalence class that
contains a.



01-55: Relation Types

Partial Order

Antisymmetric, Transitive, Reflexive

Examples:

≤ for integers
A is the set of integers, (a, b) ∈ R if a ≤ b

Ancestor
R ⊆ A× A = {(x, y) : x is an ancestor of y,
or x = y}

(example graphs)



01-56: Relation Types

Total Order

R ⊆ A×A is a total order if:
R is a partial order
For all a, b ∈ A, either (a, b) ∈ R or (b, a) ∈ R

Is ≤ a total order?

Is Ancestor a total order?

(example graphs)



01-57: Cardinality

How can we tell if two sets A and B have the same
cardinality?



01-58: Cardinality

How can we tell if two sets A and B have the same
cardinality?

Calculate |A| and |B|, make sure numbers are
the same

Match each element in A to an element in B
Create a bijection f : A 7→ B
(or f : B 7→ A)



01-59: Cardinality

What about infinite sets? Are they all
equinumerous (that is, have the same cardinality)?

A set is countable infinite (or just countable) if
it is equinumerous with N.



01-60: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Even elements of N?



01-61: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Even elements of N?

f(x) = 2x



01-62: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Integers (Z)?



01-63: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Integers (Z)?

f(x) = ⌈x

2
⌉ ∗ (−1)x

-4    -3    -2    -1    0    1    2    3    4 

...



01-64: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Union of 3 (disjoint) countable sets A, B, C?



01-65: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Union of 3 (disjoint) countable sets A, B, C?
a0   a1   a2   a3   a4  ...

b0   b1   b2   b3   b4  ...

c0   c1   c2   c3   c4  ...

f(x) =











ax

3
if x mod 3 = 0

bx−1

3

if x mod 3 = 1

cx−2

3

if x mod 3 = 2



01-66: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

N×N?
(0,0)    (0,1)    (0,2)    (0,3)    (0,4)   ...

(1,0)    (1,1)    (1,2)    (1,3)    (1,4)   ...

(2,0)    (2,1)    (2,2)    (2,3)    (2,4)   ...

(3,0)    (3,1)    (3,2)    (3,3)    (3,4)   ...

(4,0)    (4,1)    (4,2)    (4,3)    (4,4)   ...

...

......

...

...

...



01-67: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

N×N?
(0,0)    (0,1)    (0,2)    (0,3)    (0,4)   ...

(1,0)    (1,1)    (1,2)    (1,3)    (1,4)   ...

(2,0)    (2,1)    (2,2)    (2,3)    (2,4)   ...

(3,0)    (3,1)    (3,2)    (3,3)    (3,4)   ...

(4,0)    (4,1)    (4,2)    (4,3)    (4,4)   ...

...

......

...

...

...
f((x, y)) = (x+y)∗(x+y+1)

2
+ x



01-68: Countable Sets

A set is countable infinite (or just countable) if
it is equinumerous with N.

Real numbers between 0 and 1 (exclusive)?



01-69: Uncountable R

Proof by contradiction

Assume that R between 0 and 1 (exclusive) is
countable

(that is, assume that there is some bijection
from N to R between 0 and 1)

Show that this leads to a contradiction
Find some element of R between 0 and 1
that is not mapped to by any element in N



01-70: Uncountable R

Assume that there is some bijection from N to R
between 0 and 1

0      0.3412315569...
1      0.0123506541...
2      0.1143216751...
3      0.2839143215...
4      0.2311459412...
5      0.8381441234...
6      0.7415296413...

...

...



01-71: Uncountable R

Assume that there is some bijection from N to R
between 0 and 1

0      0.3412315569...
1      0.0123506541...
2      0.1143216751...
3      0.2839143215...
4      0.2311459412...
5      0.8381441234...
6      0.7415296413...

...

...

...

Consider: 0.425055...



01-72: Proof Techniques

Three basic proof techniques used in this class

Induction

Diagonalization

Pigeonhole Principle



01-73: Induction

Can create exact postage for any amount ≥ $0.08
using only 3 cent and 5 cent stamps



01-74: Induction

Can create exact postage for any amount ≥ $0.08
using only 3 cent and 5 cent stamps

Base case

Can create postage for 0.08 using one 5-cent and one
3-cent stamp



01-75: Induction

Can create exact postage for any amount ≥ $0.08
using only 3 cent and 5 cent stamps

Inductive case

To show: if we can create exact postage for $x
using only 3-cent and 5-cent stamps, we can
create exact postage for $x + $0.01 using
3-cent and 5-cent stamps

Two cases:
Exact postage for $x uses at least one 5-cent
stamp
Exact postage for $x uses no 5-cent stamps



01-76: Induction

To show: if we can create exact postage for $x
using only 3-cent and 5-cent stamps, we can
create exact postage for $x + $0.01 using 3-cent
and 5-cent stamps

Exact postage for $x uses at least one 5-cent
stamp

Replace a 5-cent stamp with two 3-cent
stamps to get $x + $0.01

Exact postage for $x uses no 5-cent stamps
Replace three 3-cent stamps with two 5-cent
stamps to get $ + $0.01



01-77: Pigeonhole Principle

A, B are finite sets, with |A| > |B|, then there is
no one-to-one function from A to B

If you have n pigeonholes, and > n pigeons, and
every pigeon is in a pigeonhole, there must be at
least one hole with > 1 pigeon.



01-78: Pigeonhole Principle

Show that in a relation R over a set A, if there is a
path from ai to aj in R, then there is a path from a

to b whose length is at most |A|.



01-79: Pigeonhole Principle

Proof by Contradiction

Assume that there exists some shortest path from
ai to aj of length > |A|.

By pigeonhole principle, some element must
repeat:

{ai, . . . , ak, . . . , ak . . . aJ}

We can create a shorter path by removing
elements between aks.

We’ve just found a shorter path from ai to aj – a
contradiction
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