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15-0: Universal TM

Turing Machines are “Hard Wired”

Addition machine only adds

0n1n2n machine only determines if a string is in
the language 0n1n2n

Have seen one “Programmable TM”

Random Access Computer TM



15-1: Universal TM

We can create a “Universal Turing Machine”

Takes as input a description of a Turing
Machine, and the input string for the Turing
Machine

Simulates running the machine on the input
string

“Turing Machine Interpreter”

Writing a Java Interpreter in Java, for instance, is
not all that strange – essentially what we are doing
with Turing Machines



15-2: Encoding a Turing Machine

Our “Universal Turing Machine” needs to have a
specific, finite alphabet of tape symbols

We need to be able to simulate any Turing Machine
with any tape alphabet

Use an encoding scheme



15-3: Encoding a Turing Machine

Tape alphabet Σ for Universal Turing Machine:

q a 0 1 , ( )

Encoded states:

q001, q010, q011, q100, . . .

Encoded Tape symbols

a001, a010, a011, a100, . . .



15-4: Encoding a Turing Machine

Turing Machine that changes all a’s to b’s, and all
b’s to a’s



15-5: Encoding a Turing Machine

R yes

b

a

a

b

⊔ a b

q0 (q2,⊔) (q1, b) (q1, a)

q1 (q0,→) (q0,→) (q0,→)

q3



15-6: Encoding a Turing Machine

⊔ a b

q0 (q2,⊔) (q1, b) (q1, a)

q1 (q0,→) (q0,→) (q0,→)

q3

Symbol Encoding

⊔ a000

← a001

→ a010

a a011

b a100

(← always symbol 1,→ always symbol 102)

(q00, a000, q10, a000)(q00, a011, q01, a100)(q00, a100, q01, a011)

(q01, a000, q00, a010)(q01, a011, q00, a100)(q01, a100, q00, a100)



15-7: Encoding a Turing Machine

Halting states can be coded implicitly

No outgoing edges = halting state

If we want a “yes” and “no” state

First halting state is “yes”

Second halting state is “no”



15-8: Encoding a Turing Machine

Given any Turing Machine M , we can create an

encoding of the machine, e(M)

Some machines will require more “digits” to
represent states & symbols

Why used q and a separators

We can actually encode any Turing Machine
(and any tape) using just 0’s and 1’s (more on
this in a minute)



15-9: Universal Turing Machine

Takes as input an encoding of a Turing Machine

e(M), and an encoding of the input tape e(w)

Simulates running M on w

3-Tape Machine:

Simulated Tape

Current State Tape

Transition Function Tape



15-10: Universal Turing Machine

Input Tape

...

State Tape
...

Transition Function Tape

a 0 1 1 a 1 0 a 0 a 1 a 1 a 1a 0 1 1 00 11 11 0 0 0

q 0 0

...( q 0 0 0 , 1 0 a 0 q 0 a 0 1 q 1 , a 1 0 ) ( 0 1 0, q 0 , , 0 0a 00 ( a0 ) 0 1 0 q , 0



15-11: Encoding a Turing Machine

Encoding a Turing Machine using just 0’s and 1’s:

If we knew how many states there were, and
how many symbols in the input alphabet, we
wouldn’t need the separators – a q ( ) ,

Each encoding start with the # of digits used for
states, and the # of digits used for alphabet
symbols, in unary.

(q00, a000, q10, a000) (q00, a011, q01, a100)
(q00, a100, q01, a011), (q01, a000, q00, a010)
(q01, a011, q00, a100) (q01, a100, q00, a100)

110111000000100000000001100001000101101
0000001001011001000110000100



15-12: Halting Problem

Halting Machine takes as input an encoding of a

Turing Machine e(M) and an encoding of an input

string e(w), and returns “yes” if M halts on w, and
“no” if M does not halt on w.

Like writing a Java program that parses a Java
function, and determines if that function halts on a
specific input

Halting
Machine

e(M)

e(w)

yes

no



15-13: Language vs. Problem

Brief Interlude

We will use “Language” and “Problem”
interchangeably

Any Problem can be converted to a Language, and
vice-versa

Problem: Multiply two numbers x and y

Language: L = {x; y; z : z = x ∗ y}



15-14: Language vs. Problem

Brief Interlude

We will use “Language” and “Problem”
interchangeably

Any Problem can be converted to a Language, and
vice-versa

Problem: Determine if a number is prime

Language: L = {p : p is prime }



15-15: Language vs. Problem

Brief Interlude

We will use “Language” and “Problem”
interchangeably

Any Problem can be converted to a Language, and
vice-versa

Problem: Determine if a Turing Machine M
halts on an input string w

Language: L = {e(M), e(w) : M halts on w}



15-16: Halting Problem

Halting Machine takes as input an encoding of a

Turing Machine e(M) and an encoding of an input

string e(w), and returns “yes” if M halts on w, and
“no” if M does not halt on w.

Like writing a Java program that parses a Java
function, and determines if that function halts on a
specific input

How might the Java version work?



15-17: Halting Problem

Halting Machine takes as input an encoding of a

Turing Machine e(M) and an encoding of an input

string e(w), and returns “yes” if M halts on w, and
“no” if M does not halt on w.

Like writing a Java program that parses a Java
function, and determines if that function halts on a
specific input

How might the Java version work?

Check for loops

while (<test>) <body>
Use program verification techniques to see if
test can ever be false, etc.



15-18: Halting Problem

The Halting Problem is Undecidable

There exists no Turing Machine that decides it

There is no Turing Machine that halts on all
inputs, and always says “yes” if M halts on w,
and always says “no” if M does not halt on w

Prove Halting Problem is Undecidable by
Contradiction:



15-19: Halting Problem

Prove Halting Problem is Undecidable by
Contradiction:

Assume that there is some Turing Machine that
solves the halting problem.

Halting
Machine

e(M)

e(w)

yes

no

We can use this machine to create a new
machine Q:

Halting
Machine

yes

e(M)

e(M)

e(M)

runs

forever

no yes

Q



15-20: Halting Problem

Halting
Machine

yes

e(M)

e(M)

e(M)

runs

forever

no yes

Q

MDUPLICATE MHALT

R
yes

no
yes



15-21: Halting Problem

Machine Q takes as input a Turing Machine M ,
and either halts, or runs forever.

What happens if we run Q on e(Q)?

If MHALT says Q should run forever on e(Q), Q
halts

If MHALT says Q should halt on e(Q), Q runs
forever

Q must not exist – but Q is easy to build if MHALT

exists, so MHALT must not exist



15-22: Halting Problem (Java)

Quick sideline: Prove that there can be no Java
program that takes as input two strings, one
containig source code for a Java program, and one
containing an input, and determines if that program
will halt when run on the given input.

boolean Halts(String SourceCode, String Input);



15-23: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {

if (Halts(SourceCode, SourceCode))

while (true);

else

return;

}



15-24: Halting Problem (Java)

boolean Halts(String SourceCode, String Input);

void Contrarian(String SourceCode) {

if (Halts(SourceCode, SourceCode))

while (true);

else

return;

}

Contrarian("void Contrarian(String SourceCode { \

if (Halts(SourceCode, SourceCode)) \

...

} ");

What happens?



15-25: Halting Problem II

What if we restrict the input language, to prohibit
“running machine on its own encoding”?

Blank-Tape Halting Problem

Given a Turing Machine M , does M halt when
run on the empty tape?



15-26: Halting Problem II

What if we restrict the input language, to prohibit
“running machine on its own encoding”?

Blank-Tape Halting Problem

Given a Turing Machine M , does M halt when
run on the empty tape?

This problem is also undecidable

Prove using a reduction



15-27: Reduction

Reduce Problem A to Problem B

Convert instance of Problem A to an instance of
Problem B

Problem A: Power – xy

Problem B: Multiplication – x ∗ y

If we can solve Problem B, we can solve
Problem A

If we can multiply two numbers, we can
calculate the power xy



15-28: Reduction

If we can reduce Problem A to Problem B, and

Problem A is undecidable, then:

Problem B must also be undecidable

Because, if we could solve B, we could solve A



15-29: Reduction

To prove a problem B is undecidable:

Start with a an instance of a known undecidable
problem (like the Halting Problem)

Create an instance of Problem B, such that the
answer to the instance of Problem B gives the
answer to the undecidable problem

If we could solve Problem B, we could solve the
halting problem . . .

. . . thus Problem B must be undecidable



15-30: Halting Problem II

Show that the Blank-Tape Halting Problem is
undecidable, by reducing the Halting Problem to
the Blank-Tape Halting Problem

Given any machine/input pair M,w, create a
machine M ′ such that M ′ halts on the empty
tape if and only if M halts on w



15-31: Halting Problem II

Given any machine/input pair M,w, create a
machine M ′ such that M ′ halts on the empty tape
if and only if M halts on w

Machine M ′:

Erase input tape (ignore input)

Write M,w on input tape

Run Universal Turing Machine

No matter what the input to M ′ is, the input is
ignored, and M ′ simulates running M on w

M ′ halts on the empty tape iff M halts on w

If we could solve the Empty-Tape Halting Problem,
we could solve the standard Halting Problem



15-32: Halting Problem II

Universal
Turing
Machine

input

e(M)

e(w)

M’

(ignored)



15-33: Halting Problem II (Java)

boolean MPrime(String Input) {

String code = " ... (any java source)"

String input = " ... (any string)"

jvm(javac(code), input);

}



15-34: More Reductions ...

What do we know about Problem A if we reduce it
to the Halting Problem?

That is, given an instance of Problem A, create
an instance of the halting problem, such that
solution to the instance of the halting problem is
the same as the solution to the instance of
Problem A



15-35: More Reductions ...

What do we know about Problem A if we reduce it
to the Halting Problem?

That is, given an instance of Problem A, create
an instance of the halting problem, such that
solution to the instance of the halting problem is
the same as the solution to the instance of
Problem A

We know that the Halting Problem is at least as
hard as Problem A

If we could decide the Halting Problem, we
could decide Problem A



15-36: More Reductions ...

What do we know about Problem A if we reduce it
to the Halting Problem?

That is, given an instance of Problem A, create
an instance of the halting problem, such that
solution to the instance of the halting problem is
the same as the solution to the instance of
Problem A

We know that the Halting Problem is at least as
hard as Problem A

If we could decide the Halting Problem, we
could decide Problem A

... Which tells us nothing about Problem A!



15-37: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?



15-38: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?

Start with an instance M,w of the halting
problem

Create M1, which accepts everything

Create M2, which ignores its input, and runs
M,w through the Universal Turing Machine.
Accept if M halts on w.

If M halts on w, then L[M2] = Σ∗, and

L[M1] = L[M2]

If M does not halt on w, then L[M2] = {}, and

L[M1] 6= L[M2]



15-39: More Reductions ...

Given two Turing Machines M1, M2, is

L[M1] = L[M2]?

Universal
Turing
Machine

input

e(M)

e(w)

M

(ignored)
input

(ignored)
yes

2 M1



15-40: More Reductions ...

If we had a machine Msame that took as input the
encoding of two machines M1 and M2, and

determined if L[M1] = L[M2], we could solve the
halting problem for any pair M,w:

Create a Machine that accepts everything
(easy!). Encode this machine.

Create a Machine that first erases its input,
then writes e(M), e(w) on input, then runs
Universal TM. Encode this machine

Feed encoded machines into Msame. If Msame

says “yes”, then M halts on w, otherwise M
does not halt on w



15-41: More Reductions ...

Is the language described by a TM M regular?

This problem is also undecidable

Use a reduction



15-42: More Reductions ...

Recall: to show a problem P is undecidable:

Pick a known undecidable problem PUND

Create an instance of P , such that if we could
solve P , we could solve PUND

Since PUND is known to be undecidable, P
must be undecidable, too.



15-43: More Reductions ...

Is the language described by a TM M regular?

Let M,w be an instance of the halting problem

Create a new machine M ′, that first runs M on
w. If that process halts, the input string is run
though a machine that accepts the language
anbn



15-44: More Reductions ...

Universal
Turing
Machine

input

e(M)

e(w)

M’

a bn n

After M halts on w

What is L[M ′]?



15-45: More Reductions ...

Universal
Turing
Machine

input

e(M)

e(w)

M’

a bn n

After M halts on w

What is L[M ′]?

If M halts on w, then L[M ′] = anbn, which is
not regular

If M does not halt on w, then L[M ′] = {},
which is regular



15-46: More Reductions ...

So, if we have a machine MREG, that took as input
a Turing machine M1, and decided if L[M1] is
regular, then:

For any Turing machine M and string w, we
can decide if M halts on w

Create M ′ from M and w

Feed M ′ through MREG

If MREG says “yes”, then M does not halt on w.
If MREG says “no”, then M does halt on w



15-47: More Reductions ...

Given a Turing Machine M , is |L[M ]| > 0? That is,
are there any strings accepted by M?



15-48: More Reductions ...

Given a Turing Machine M , is |L[M ]| > 0? That is,
are there any strings accepted by M?

Undecidable, by reduction from the halting
problem.

Given any TM M and string w, we create a TM
M ′ such that:
L[M ′] = Σ∗ if M halts on w

L[M ′] = {} otherwise



15-49: More Reductions ...

Given a Turing Machine M , is |L[M ]| > 0? That is,
are there any strings accepted by M?

Consider M ′:

Erases input

Simulates running M on w

Accepts



15-50: Questions about Grammars

The following questions about unrestricted
grammars are all undecidable:

Given a Grammar G and string w, is w ∈ L[G]?

Given a Grammar G, is ǫ ∈ L[G]?

Given Grammars G1 and G2, is L[G1] = L[G2]?

Given a Grammar G, is L[G] = {}



15-51: Questions about Grammars

The following questions about unrestricted
grammars are all undecidable:

Given a Grammar G and string w, is w ∈ L[G]?

By reduction from the Halting Problem:
Given any Machine M , we can construct an
unrestricted Grammar G, such that
L[G] = L[M ]
w ∈ L[M ] iff w ∈ L[G]



15-52: Questions about Grammars

The following questions about Context-Free
Grammars are decidable:

Given a Grammar G and string w, is w ∈ L[G]?
Compilers would be hard to write, otherwise

Given a Grammar G, is ǫ ∈ L[G]?
This is a special case of determining if

w ∈ L[G]



15-53: Questions about Grammars

However, there are some problems about CFGs
that are not decidable:

Given any CFG G, is L[G] = Σ∗

Given any two CFGs G1 and G2, is
L[G1] = L[G2]

Given two PDA M1 and M2, is L[M1] = L[M2]

Given a PDA M , find an equivalent PDA with
the smallest possible number of states



15-54: Questions about Grammars

Given any CFG G, is L[G] = Σ∗?

Prove this problem is undecidable by reduction
from the problem “Given an unrestricted
grammar G, is L[G] = {}

That is, given any unrestricted grammar G, we
will create a CFG G′:
L[G′] = Σ∗ iff L[G] = {}



15-55: Questions about Grammars

Given any unrestricted grammar G, we will create

a CFG G′, such that L[G′] = Σ∗ iff L[G] = {}

First, we will modify G, to create an equivalent
grammar

S → aBSc

S → X

Ba→ aB

BX → Xb

aX → a



15-56: Questions about Grammars

Given any unrestricted grammar G, we will create

a CFG G′, such that L[G′] = Σ∗ iff L[G] = {}

First, we will modify G, to create an equivalent
grammar

S → A1 A1 → aBSc

S → A2 A2 → X

Ba→ A3 A3 → aB

BX → A4 A4 → Xb

aX → A5 A5 → a



15-57: Questions about Grammars

A standard derivation in this new grammar is
one in which each odd step applies of rule of the
form ui → Ai, and every even step applies a rule
of the form Ai → vi

S ⇒ A1 ⇒ aBSc⇒ aBA2c⇒ aBXc
⇒ aA4c⇒ aXbc⇒ A5bc⇒ abc

S → A1 A1 → aBSc

S → A2 A2 → X

Ba→ A3 A3 → aB

BX → A4 A4 → Xb

aX → A5 A5 → a



15-58: Questions about Grammars

Each standard derivation of a string generated
from G can be considered a string over the

alphabet V ∪ {⇒} (recall V contains Σ as well as
non-terminals)

We can define a new langauge DG, the set of all
valid standard derivations of string generated by G.

“S ⇒ A1 ⇒ aBSc⇒ aBA2c⇒ aBXc⇒ aA4c⇒
aXbc⇒ A5bc⇒ abc” ∈ DG

“S ⇒ A1 ⇒ aBSc⇒ aBA1c⇒ aBaBScc⇒
aBaBA2cc⇒ aBaBXcc⇒ aA3BXcc⇒
aaBBXcc⇒ aaBA4cc⇒ aaBXbcc⇒ aaA4bcc⇒
aaXbbcc⇒ aA5bbcc⇒ aabbcc” ∈ DG



15-59: Questions about Grammars

A boustrophedon version of a derivation is one
in which the odd numbered elements of the
derivation are reversed:

S ⇒ xR
1
⇒ x2 ⇒ xR

3
⇒ . . .⇒ xR

n−1
⇒ xn

Derivation
S ⇒ A1 ⇒ aBSc⇒ aBA2c⇒ aBXc
⇒ aA4c⇒ aXbc⇒ A5bc⇒ abc

Boustrophedon version of the derivation
S ⇒ A1 ⇒ aBSc⇒ cA2Ba⇒ aBXc
⇒ cA4a⇒ aXbc⇒ cbA5 ⇒ abc



15-60: Questions about Grammars

DG is the language of all standard derivations of

strings in L[G]

BDG is the language of all boustrophedon

versions of standard derivations of strings in L[G]

“S ⇒ A1 ⇒ aBSc⇒ cA2Ba⇒ aBXc⇒ cA4a⇒
aXbc⇒ cbA5 ⇒ abc” ∈ BDG



15-61: Questions about Grammars

Given any Unrestricted Grammar G:

L[G] is the set of all strings generated by G

DG is the set of all strings that represent
standard derivations of strings generated by G

BDG is the set of all strings that represent
boustrophedon versions of standard derivations
of strings in L[G]

BDG is the set of all strings that do not
represent boustrophedon versions of standard
derivations of strings in L[G].

w ∈ BDG if w represents only a partial
derivation, or an incorrect derivation, or a
mal-formed derivation



15-62: Questions about Grammars

What does it mean if BDG = Σ∗?



15-63: Questions about Grammars

What does it mean if BDG = Σ∗?

BDG = {}

DG = {}

L[G] = {}

So, if we could build a CFG that generates BDG,
for any unrestricted grammar G, and we could

determine if L[G′] = Σ∗ for any CFG G′ ...



15-64: Questions about Grammars

What does it mean if BDG = Σ∗?

BDG = {}

DG = {}

L[G] = {}

So, if we could build a CFG that generates BDG,
for any unrestricted grammar G, and we could

determine if L[G′] = Σ∗ for any CFG G′ ...

We could determine if L[G] = {} for any
unrestricted grammar G – which means we could
solve the halting problem (why?)



15-65: Building a CFG for BDG

When is w 6∈ BDG?

w does not start with S ⇒

w does not end with⇒ v, v ∈ Σ∗

w contains an odd # of⇒’s

w is of the form u⇒ y ⇒ v, or u⇒ y
u contains an even number of⇒’s
y contains exactly one⇒
y is not of the form y = y1Aiy2 ⇒ yR

2
βiy

R
1

for

some i ≤ |R|, y1, y2 ∈ V ∗, where βi is the
right-hand side of the ith rule in G

. . . (there’s more)



15-66: Building a CFG for BDG

When is w 6∈ BDG?

. . .

w is of the form u⇒ y ⇒ v
u contains an odd number of⇒’s
y contains exactly one⇒
y is not of the form y = y1αiy2 ⇒ yR

2
Aiy

R
1

for

some i ≤ |R|, y1, y2 ∈ V ∗, where αi is the
right-hand side of the ith rule in G



15-67: Building a CFG for BDG

w does not start with S ⇒

We can create a CFG for all strings

w ∈ (V ∪ ⇒)∗ that do not start with S ⇒

This language is regular, we could even creatre
a DFA or regular expression for it.



15-68: Building a CFG for BDG

w does not end with⇒ v, v ∈ Σ∗

We can create a CFG for all strings

w ∈ (V ∪ ⇒)∗ that do not end with⇒ v, v ∈ Σ∗

This language is regular, we could even create
a DFA or regular expression for it.



15-69: Building a CFG for BDG

w does contains an odd # of⇒s

We can create a CFG for all strings

w ∈ (V ∪ ⇒)∗ that contain an odd # of⇒’s

This language is regular, we could even create
a DFA or regular expression for it.



15-70: Building a CFG for BDG

w is of the form u⇒ y ⇒ v, or u⇒ y

u contains an even number of⇒’s

y contains exactly one⇒

y is not of the form y = y1Aiy2 ⇒ yR
2
βiy

R
1

for

some i ≤ |R|, y1, y2 ∈ V ∗, where βi is the
right-hand side of the ith rule in G

We can create a PDA which accepts strings w of
this form



15-71: Building a CFG for BDG

We can create a PDA which can accept all strings
w of this form

First, check that the first part of the string is of

the form: V ∗(⇒ V ∗ ⇒ V ∗)∗

Non-deterministically decide when to stop

Push Symbols on stack until a⇒

Check the input against the stack, making sure
there is at least one mismatch

Just like the PDA for non-palindromes



15-72: Building a CFG for BDG

A ABc3

(A,A   ε)3 (B,ε,ε)

(A,A   ε)3 (B,ε,ε)

(c,ε,ε)

(V,ε,ε)
(ε,Γ,ε)

(V,ε,ε) (V,ε,ε) (V,ε,ε)

(a,ε,a)

(b,ε,b)

(c,ε,c)

   ...
(A,ε,A)

   ...



15-73: Building a CFG for BDG

w is of the form u⇒ y ⇒ v

u contains an odd number of⇒’s

y contains exactly one⇒

y is not of the form y = y1αiy2 ⇒ yR
2
Aiy

R
1

for

some i ≤ |R|, y1, y2 ∈ V ∗, where αi is the
right-hand side of the ith rule in G

We can create a PDA which accepts all strings w
of this form.



15-74: Questions about Grammars

If we could determine, for any CFG G, if
L[G] = Σ∗, we could solve the halting problem

Given any TM M and string w:

Create a new TM M ′, that accepts Σ∗ if M halts
on w, and {} otherwise

Create an Unrestricted Grammar, such that
L[G] = L[M ′]

Create a CFG G′ for BDG

L[G′] = Σ∗ if and only if L[G] = {},
L[M ′] = {}, and M does not halt on w



15-75: Questions about Grammars

Undecidable problems about CFGs

Given any CFG G, is L[G] = Σ∗

Just proved

Given any two CFGs G1 and G2, is
L[G1] = L[G2]

Given two PDA M1 and M2, is L[M1] = L[M2]

Given a PDA M , find an equivalent PDA with
the smallest possible number of states



15-76: Questions about Grammars

Given any two CFGs G1 and G2, is L[G1] = L[G2]

We can easily create a CFG G2 which
generates Σ∗

How?
Note that the preceding proof did not say “we

cannot decide if L[G] = Σ∗ for any grammar
G,” but instead, “we cannot decide if
L[G] = Σ∗ for every grammar G.

For any CFG G1, L[G1] = L[G2] if and only if

L[G1] = Σ∗



15-77: Questions about Grammars

Given two PDA M1 and M2, is L[M1] = L[M2]

We can convert a CFG to an equivalent PDA

If we could determine if two PDA are equivalent:
We could determine if two CFGs are
equivalent
We could determine if a CFG accepted Σ∗

We could determine if an Unrestricted
Grammar generated any strings
We could determine if a Turing Machine
accepted any strings
We could solve the halting problem



15-78: Questions about PDA

Given a PDA M , find an equivalent PDA with the
smallest possible number of states

First, prove that it is decidable whether a PDA
with one state accepts Σ∗



15-79: Questions about PDA

It is decidable whether a PDA with a single state
accepts Σ∗

A PDA that accepts Σ∗ must accept Σ.

We can test whether a PDA accepts Σ
Is w ∈ L[M ] for a PDA M is decidable

Test each of the |Σ| strings sequentially

We can decide if a PDA M accepts Σ



15-80: Questions about PDA

If a Single State PDA M accepts Σ, then M
accepts Σ∗.

Why?



15-81: Questions about PDA

If a Single State PDA M accepts Σ, then M
accepts Σ∗.

Start in the initial state (which is also a final
state) with an empty stack

After reading a single character, stack is empty,
and we’re (still!) in the initial (and final!) state –
accept the string

We are in exactly the same position after
reading one symbol as we were before reading
in anything

After reading the next symbol, we will be in a
final state with an empty stack – accept the
string



15-82: Questions about PDA

Given a PDA M , find an equivalent PDA with the
smallest possible number of states

It is decidable whether a PDA with one state
accepts Σ∗

So ...



15-83: Questions about PDA

Given a PDA M , find an equivalent PDA with the
smallest possible number of states

It is decidable whether a PDA with one state
accepts Σ∗

If we could minimize the number of states in a
PDA, we could decide if a PDA accepted Σ∗

Minimize the number of states.
PDA accepts Σ∗ iff minimized PDA has a
single state, and minimized PDA accepts Σ



15-84: Tiling Question

There are some problems which seem to have no
relation to Turing Machines at all, which turn out to
be undecidable

Tiling Problem:

Set of tiles (infinite # of copies of each tile)

Rules for which tiles can be placed next to
which other tiles (think puzzle pieces)

Can we tile the entire plane?



15-85: Tiling Question

...

...

...

...

origin
tile

...

...

...



15-86: Tiling Question

Tiling System D = (D, d0, H, V )

D is a set of tiles

d ∈ D is the origin tile

H ⊂ D ×D list of pairs of which tiles can be
next to each other

V ⊂ D ×D list of pairs of which tiles can be on
top of each other



15-87: Tiling Question

Tiling function f : N ×N 7→ D

Specifies which tile goes where

f(0, 0) = d0

(f(m,n), f(m + 1, n)) ∈ H

(f(m,n), f(m,n + 1)) ∈ V



15-88: Tiling Question

Problem:

Given a tiling system D = (D, d0, H, V ), does a
tiling exists?

That is, is there a completely defined tiling
function f that satisfies the requirements:
f(0, 0) = d0
(f(m,n), f(m + 1, n)) ∈ H

(f(m,n), f(m,n + 1)) ∈ V

This problem is undecidable!



15-89: Tiling Question

Tiling Problem is undecidable

Proof by reduction from the empty tape halting
problem

Given any Turing Machine M

Create a tiling system D

A tiling will exist for D if and only if M does not
halt when run on the empty tape



15-90: Tiling Question

Given any Turing Machine M , create a tiling
system D

Basic Idea:

Each row of the tiling represents a TM
configuration

Infinite row, infinite tape

Create rules so that successive rows i and j
are only legal if TM can transition form
configuration i to configuration j in one step

Can tile the entire plane if and only if TM does
not halt



15-91: Tiling Question

Label the edges of each tile

Two tiles can only be adjacent if the edges match

Just like a standard jigsaw puzzle



15-92: Tiling Question

We will modify the Turing Machine M slightly to get
M ′ (makes creating the tiling system a little easier)

Add a new symbol > to the tape symbols of M

Add a new start state s′

Add a transition ((s′, >), (s,→))

M halts on empty tape if and only if M ′ halts on
the tape containing >



15-93: Tiling Question

Tiles:

For each symbol a that can appear on the tape
of Turing Machine M , add the tile:

a

a

Top and bottom edges labeled with a, left and
right edges labeled with ǫ



15-94: Tiling Question

Tiles:

For each transition ((q, a), (p, b)) in δM add the
tile:

(p,b)

(q,a)



15-95: Tiling Question

Tiles:

For each transition ((q, a), (p,→)) in δM add the
tiles:

a

(q,a)

(p,b)

b

p p

Add a copy of right-hand tile for every symbol b



15-96: Tiling Question

Tiles:

For each transition ((q, a), (p,←)) in δM add the
tiles:

(p,b)

b

a

(q,a)

p p

Add a copy of left-hand tile for every symbol b



15-97: Tiling Question

Initial Tile:

(s’,>)



15-98: Tiling Question

One final tile:



15-99: Tiling Question

This tiling system has a tiling if and only if M does
not halt on the empty tape.

Example:

> ⊔

s′ (s,→)

s (s,⊔)



15-100: Tiling Question

> ⊔

s′ (s,→)

s (s,⊔)

>

>

(s’,>)

s

>

s s

(s,   ) (s,>)

>

(s,   )

(s,   )

(s’,>)



15-101: Tiling Question

...

...

...

...

(s’,>)

(s’,>)

s s

(s,   )>

...
(s,   )>

> (s,   )

...
...

(s,   )>

> (s,   )

...

...

...



15-102: Tiling Question

Example II:

> ⊔

s′ (s,→)

s (p,→)

p (s,←)



15-103: Tiling Question

>

>

(s’,>)

s

>

s s

(s,   ) (s,>)

>
(s’,>)

(s,   )

p p p

(p,   ) (p,>)

>

(p,   )

s s s

(s,   ) (s,>)

>



15-104: Tiling Question

...

...

...

...
(s’,>)

(s’,>)

s s

(s,   )>

...
>

>

...
...

>

>

...

...

...

(s,   )

p p

(p,   )

(p,   )

ss

(s,   )

...
>

> (s,   )

p p

(p,   )



15-105: Tiling Question

Example III:

> ⊔

s′ (s,→)

s (s,→)



15-106: Tiling Question

>

>

(s’,>)

s

>

s s

(s,   ) (s,>)

>

(s’,>)

(s,   )

s s s

(s,   ) (s,>)

>



15-107: Tiling Question

...

...

...

...
(s’,>)

(s’,>)

s s

(s,   )>

...
>

>

...
>

>

...

...

...

(s,   )

s s

(s,   )

>

>

(s,   )

s s

(s,   )

(s,   )

s s

(s,   )



15-108: Tiling Question

Example IV:

> ⊔ a

s′ (s,→)

s (p,→)

p (s,←)



15-109: Tiling Question

>

>

(s’,>)

s

>

s s

(s,   ) (s,>)

>

(s’,>)

(s,   )

p p p

(p,   ) (p,>)

>

(p,a)

s s s

(s,   ) (s,>)

>

a

s

(s,a)

a

p

(p,a)

a

s

(s,a)

a

a

a



15-110: Tiling Question

...

...
(s’,>)

(s’,>)

s s

(s,   )>

...
>

>

...

(s,   )

p p

(p,   )

Can’t Place
Any tile here
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