
Automata Theory
CS411-2015F-16

Enumeration Machines & Rice’s Theorem

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

16-0: Enumeration Machines

An Enumeration Machine is a special kind of
Turing Machine:

Takes no input

Produces strings as output

Turn it on, and it start spitting out strings

16-1: Enumeration Machines

Enumeration Machine M :

M has a a special (non-halting) “output state”

Whenever M enters “output state”, contents of
the tape are output

We will insist that the tape is of the form ⊲⊔w

M runs forever, outputting strings

L[M] = {w : w is eventually ouput by M}

16-2: Enumeration Machines

Enumeration machine for a∗ (output state is qout)

a ⊔

q0 (q1,→)

q1 (q1,→) (q2, a)

q2 (q2,←) (qout,⊔)

qout (q1,→)

16-3: Enumeration Machines

Enumeration machine for ba∗b

16-4: Enumeration Machines

Enumeration machine for ba∗b
a b ⊔

q0 (q1,→)

q1 (q2, b)

q2 (q2,→) (q3, b)

q3 (q3,←) (q3,←) (qout,⊔)

q4 (q4,→) (q4,→) (q5, b)

q5 (q6,←)

q6 (q3, a)

qout (q4,→)

16-5: Enumeration & Recursive

All recursive languages can be enumerated

How?

16-6: Enumeration & Recursive

All recursive languages can be enumerated

If a language is recursive, there exists some TM
M that decides it

Generate each string in Σ∗ in lexicographic
order

Run each generated string through M .
If M says “yes”, output the string

16-7: Enumeration & r.e.

Can a recursively enumerable languages be
enumerated?

The name does give a hint ...

16-8: Enumeration & r.e.

Recursively enumerable languages can be
enumerated!

The enumeration method for recursive
languages doesn’t work

Why?

16-9: Enumeration & r.e.

Recursively enumerable languages can be
enumerated!

We will use the same trick we used to show that
a deterministic TM can be simulated by a
non-deterministic TM

Try first (lexicographicly) string for 1 step

Try first and second strings for 2 steps each

Try first, second, and third strings for 3 steps
each

. . . and so on

16-10: Enumeration & r.e.

Recursively enumerable languages can be
enumerated

We have no idea in what order the strings in the
language will be output.

Why?

What if we had an enumeration machine that could
output the strings of a language L in
lexicographical order – what would we know about
L?

16-11: Enumeration & r.e.

If an enumeration machine outputs the strings of a
language L in lexicographical order, then L is
recursive.

We can write a Turing Machine M that decides L

To determine if w is in L:

Start running the enumeration machine

Eventually, either w will be output, or some
string that appears after w lexicographically will
be output.

16-12: Enumeration & r.e.

If a language can be enumerated by an
enumeration machine, it can be semi-decided by a
(standard) Turing machine

Given an enumeration machine that generates
L, how can we create a standard Turing
machine that semi-decides L?

16-13: Enumeration & r.e.

Given an enumeration machine that generates L,
we can create a standard Turing machine that
semi-decides L

Move tape head just beyond input

Start up enumeration machine

Each time a string is output, check to see if it
matches input string. If so, halt and accept

16-14: Recursive & r.e.

A Language L is recursive if and only if both L and

L are recursively enumerable

L is recursive if there exists a Turing Machine
M that decides L

L is recursively ennumerable if there exists a
Turing Machine M that semi-decides L

16-15: Recursive & r.e.

A Language L is recursive if and only if both L and

L are recursively enumerable

“only if” (If L is recursive, then L and L are
recursively enumerable)

16-16: Recursive & r.e.

A Language L is recursive if and only if both L and

L are recursively enumerable

“only if”
If L is recursive, then L is recursively
enumerable
If L is recursive, then L is recursive (swap

yes/no states), and hence L is recursively
enumerable

16-17: Recursive & r.e.

A Language L is recursive if and only if both L and

L are recursively enumerable

“if” (If L and L are recursively enumerable, then
L is recursive)

16-18: Recursive & r.e.

A Language L is recursive if and only if both L and

L are recursively enumerable

“if”
Run r.e. machines for L and L in parallel
Eventually one of them will halt

16-19: Properties of r.e. Languages

Are the recursively enumerable languages closed
under union?

Given a Turing Machines M1 and M2, can we
create a Turing Machine M such that

L[M] = L[M1] ∪ L[M2]?

16-20: Properties of r.e. Languages

Are the recursively enumerable languages closed
under union?

Given a Turing Machines M1 and M2, can we
create a Turing Machine M such that

L[M] = L[M1] ∪ L[M2]?

M

M

1

2

16-21: Properties of r.e. Languages

Are the recursively enumerable languages closed
under intersection?

Given a Turing Machines M1 and M2, can we
create a Turing Machine M such that

L[M] = L[M1] ∩ L[M2]?

16-22: Properties of r.e. Languages

Given a Turing Machines M1 and M2, can we
create a Turing Machine M such that

L[M] = L[M1] ∩ L[M2]?

First, make a backup copy of w

Run M1 on w. If it halts and accepts ...

Restore w from the backup and run M2 on w

Return result of running M2 on w

16-23: Properties of r.e. Languages

Are the recursively enumerable languages closed
under complementation?

Given a Turing Machines M , can we create a

Turing Machine M ′ such that L[M ′] = L[M]?

16-24: Properties of r.e. Languages

Given a Turing Machines M , can we create a

Turing Machine M ′ such that L[M ′] = L[M]?

NO!

If L and L are r.e., then L is recursive.

There are some r.e. languages (the halting
problem, for instance) that are not recursive

16-25: Rice’s Theorem

Determining if the language accepted by a Turing
machine has any non-trivial property is
undecidable

“Non-Trivial” property means:

At least one recursively enumerable language
has the property

Not all recursively enumerable languages have
the property

Example: Is the language accepted by a Turing
Machine M regular?

16-26: Rice’s Theorem

Problem: Is the language defined by the Turing
Machine M recursively enumerable?

Is this problem decidable?

16-27: Rice’s Theorem

Problem: Is the language defined by the Turing
Machine M recursively enumerable?

Is this problem decidable? YES!

All recursively enumerable languages are
recursively enumerable.

The question is “trivial”

16-28: Rice’s Theorem

Problem: Does the Turing Machine M accept the
string w in k computational steps?

Is this problem decidable?

16-29: Rice’s Theorem

Problem: Does the Turing Machine M accept the
string w in k computational steps?

Is this problem decidable? YES!

Problem is not language related – we’re not
asking a question about the language that is
accepted, but about the language that is
accepted within a certain number of steps

16-30: Rice’s Theorem – Proof

We will prove Rice’s theorem by showing that, for
any non-trivial property P , we can reduce the
halting problem to the problem of determining if the
language accepted by a Turing Machine has
Property P .

Given any Machine M , string w, and non-trivial
property P , we will create a new machine M ′, such
that either

L[M ′] has property P if and only if M halts on
w

L[M ′] has property P if and only if M does not
halt on w

16-31: Rice’s Theorem – Proof

Let P be some non-trivial property of a language.

Two cases:

The empty language {} has the property

The empty language {} does not have the
property

16-32: Rice’s Theorem – Proof

Properties that the empty language has:

Regular Languages

Languages that do not contain the string “aab”

Languages that are finite

Properties that the empty language does not have:

Languages containing the string “aab”

Languages containing at least one string

Languages that are infinite

16-33: Rice’s Theorem – Proof

Let M be any Turing Machine, w be any input
string, and P be any non-trivial property of a

language, such that {} has property P .

Let LNP be some recursively enumerable language
that does not have the property P , and let MNP be
a Turing Machine such that L[MNP] = LNP

We will create a machine M ′ such that M ′ has
property P if and only if M does not halt on w.

16-34: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MNP on input

16-35: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MNP on input

If M halts on w, L[M ′] = LNP , and L[M ′] does not
have property P

If M does not halt on w, L[M ′] = {}, and L[M ′]
does have property P

16-36: Rice’s Theorem – Proof

Let M be any Turing Machine, w be any input
string, and P be any non-trivial property of a

language, such that {} does not have property P .

Let LNP be some recursively enumerable language
that does have the property P , and let MP be a
Turing Machine such that L[MP] = LP

We will create a machine M ′ such that M ′ has
property P if and only if M does halt on w.

16-37: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MP on input

16-38: Rice’s Theorem – Proof

M ′:

Save input

Erase input, simulate running M on w

Restore input

Simulates running MP on input

If M halts on w, L[M ′] = LP , and L[M ′] does have
property P

If M does not halt on w, L[M ′] = {}, and L[M ′]
does not have property P

16-39: Undecidability

How many undecidable languages are there?

A language is a set of strings

Set of all languages over Σ∗ is the set of all
subsets of Σ∗

Set of all languages over Σ∗ is 2Σ
∗

16-40: Undecidability

How many different langauges over Σ∗ are there?

The set of all langauges over an alphabet Σ is

2Σ
∗

There is a bijection between strings and
integers (lexigraphic ordering)

Thus, the number of different languages is

2Σ
∗

= |2N|

How big is 2N?

16-41: Undecidability

2N is uncountable

Proof by contradiction (yet another
diagonalization!)

Assume that there is a bijection between N and

2N

Show that there must be an element of 2N that
is not in the bijection – contradiction!

16-42: 2
N is Uncountable

Assume that there is a bijection between N and 2N

0 {100, 8, 6}

1 {0, 1, 2, 3, 9, 11, 22}

2 {}

3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . .}

4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .}

5 {3, 9, 11, 23, 54, 128}

.

We will find an element of 2N that is not in the
bijection

16-43: 2
N is Uncountable

Let Sn be the set mapped to by n in the bijection

Consider the set S = {x : x ∈ N, S 6∈ Sx}

0 {100, 8, 6}

1 {0, 1, 2, 3, 9, 11, 22}

2 {}

3 {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . .}

4 {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .}

5 {3, 9, 11, 23, 54, 128}

.

S = {0, 2, 3, 5, . . .}

16-44: # of Turing Machines

How many Turing Machines are there?

Any Turing Machine can be represented by a
finite string of 0’s and 1’s

There is a bijection between set of all Turing
Machines and N

Countable # of Turing Machines

16-45: Undecidability

Each language represents a problem

Each Turing Machine represents a solution to a
problem

There are a countable number of Turing Machines,
and an uncountable number of languages

Vastly more undecidable problems than
decidable problems!

	{small lecturenumber -	heblocknumber :} Enumeration Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & Recursiveaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & Recursiveaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Enumeration & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Recursive & r.e.addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Properties of r.e. Languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Rice's Theorem -- Proofaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undecidabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undecidabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undecidabilityaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $2^{�f N}$ is Uncountableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} $2^{�f N}$ is Uncountableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} # of Turing Machinesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Undecidabilityaddtocounter {blocknumber}{1}

