16-0: **Enumeration Machines**
- An Enumeration Machine is a special kind of Turing Machine:
 - Takes no input
 - Produces strings as output
 - Turn it on, and it starts spitting out strings

16-1: **Enumeration Machines**
- Enumeration Machine M:
 - M has a special (non-halting) “output state”
 - Whenever M enters “output state”, contents of the tape are output
 - We will insist that the tape is of the form $\sqsubset w$
 - M runs forever, outputting strings
 - $L[M] = \{w : w$ is eventually output by $M\}$

16-2: **Enumeration Machines**
- Enumeration machine for a^* (output state is q_{out})

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>\sqsubset</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>(q_1, \rightarrow)</td>
<td></td>
</tr>
<tr>
<td>q_1</td>
<td>(q_2, a)</td>
<td></td>
</tr>
<tr>
<td>q_2</td>
<td>(q_{out}, \sqsubset)</td>
<td></td>
</tr>
<tr>
<td>q_{out}</td>
<td>(q_1, \rightarrow)</td>
<td></td>
</tr>
</tbody>
</table>

16-3: **Enumeration Machines**
- Enumeration machine for ba^*b

16-4: **Enumeration Machines**
- Enumeration machine for ba^*b

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>\sqsubset</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td></td>
<td></td>
<td>(q_1, \rightarrow)</td>
</tr>
<tr>
<td>q_1</td>
<td></td>
<td></td>
<td>(q_2, b)</td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
<td>(q_3, \rightarrow)</td>
</tr>
<tr>
<td>q_3</td>
<td>(q_3, \leftarrow)</td>
<td>(q_3, \leftarrow)</td>
<td>(q_{out}, \sqsubset)</td>
</tr>
<tr>
<td>q_4</td>
<td>(q_4, \rightarrow)</td>
<td>(q_4, \rightarrow)</td>
<td>(q_5, b)</td>
</tr>
<tr>
<td>q_5</td>
<td>(q_6, \leftarrow)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_6</td>
<td>(q_3, a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_{out}</td>
<td></td>
<td></td>
<td>(q_4, \rightarrow)</td>
</tr>
</tbody>
</table>

16-5: **Enumeration & Recursive**
- All recursive languages can be enumerated
 - How?

16-6: **Enumeration & Recursive**
• All recursive languages can be enumerated
 • If a language is recursive, there exists some TM M that decides it
 • Generate each string in Σ^* in lexicographic order
 • Run each generated string through M.
 • If M says “yes”, output the string

16-7: Enumeration & r.e.

• Can a recursively enumerable languages be enumerated?
 • The name does give a hint ...

16-8: Enumeration & r.e.

• Recursively enumerable languages can be enumerated!
 • The enumeration method for recursive languages doesn’t work
 • Why?

16-9: Enumeration & r.e.

• Recursively enumerable languages can be enumerated!
 • We will use the same trick we used to show that a deterministic TM can be simulated by a non-deterministic TM
 • Try first (lexicographicly) string for 1 step
 • Try first and second strings for 2 steps each
 • Try first, second, and third strings for 3 steps each
 • . . . and so on

16-10: Enumeration & r.e.

• Recursively enumerable languages can be enumerated
 • We have no idea in what order the strings in the language will be output.
 • Why?
 • What if we had an enumeration machine that could output the strings of a language L in lexicographical order – what would we know about L?

16-11: Enumeration & r.e.

• If an enumeration machine outputs the strings of a language L in lexicographical order, then L is recursive.
 • We can write a Turing Machine M that decides L
 • To determine if w is in L:
 • Start running the enumeration machine
 • Eventually, either w will be output, or some string that appears after w lexicographically will be output.

16-12: Enumeration & r.e.
• If a language can be enumerated by an enumeration machine, it can be semi-decided by a (standard) Turing machine
 • Given an enumeration machine that generates L, how can we create a standard Turing machine that semi-decides L?

16-13: **Enumeration & r.e.**

• Given an enumeration machine that generates L, we can create a standard Turing machine that semi-decides L
 • Move tape head just beyond input
 • Start up enumeration machine
 • Each time a string is output, check to see if it matches input string. If so, halt and accept

16-14: **Recursive & r.e.**

• A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 • L is recursive if there exists a Turing Machine M that decides L
 • L is recursively enumerable if there exists a Turing Machine M that semi-decides L

16-15: **Recursive & r.e.**

• A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 • “only if” (If L is recursive, then L and \overline{L} are recursively enumerable)

16-16: **Recursive & r.e.**

• A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 • “only if”
 • If L is recursive, then L is recursively enumerable
 • If L is recursive, then \overline{L} is recursive (swap yes/no states), and hence \overline{L} is recursively enumerable

16-17: **Recursive & r.e.**

• A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 • “if” (If L and \overline{L} are recursively enumerable, then L is recursive)

16-18: **Recursive & r.e.**

• A Language L is recursive if and only if both L and \overline{L} are recursively enumerable
 • “if”
 • Run r.e. machines for L and \overline{L} in parallel
 • Eventually one of them will halt

16-19: **Properties of r.e. Languages**

• Are the recursively enumerable languages closed under union?
• Given a Turing Machines M_1 and M_2, can we create a Turing Machine M such that $L[M] = L[M_1] \cup L[M_2]$?

16-20: Properties of r.e. Languages

• Are the recursively enumerable languages closed under union?
 • Given a Turing Machines M_1 and M_2, can we create a Turing Machine M such that $L[M] = L[M_1] \cup L[M_2]$?

M_1

M_2

16-21: Properties of r.e. Languages

• Are the recursively enumerable languages closed under intersection?
 • Given a Turing Machines M_1 and M_2, can we create a Turing Machine M such that $L[M] = L[M_1] \cap L[M_2]$?

16-22: Properties of r.e. Languages

• Given a Turing Machines M_1 and M_2, can we create a Turing Machine M such that $L[M] = L[M_1] \cap L[M_2]$
 • First, make a backup copy of w
 • Run M_1 on w. If it halts and accepts ...
 • Restore w from the backup and run M_2 on w
 • Return result of running M_2 on w

16-23: Properties of r.e. Languages

• Are the recursively enumerable languages closed under complementation?
 • Given a Turing Machines M, can we create a Turing Machine M' such that $L[M'] = \overline{L[M]}$?

16-24: Properties of r.e. Languages

• Given a Turing Machines M, can we create a Turing Machine M' such that $L[M'] = \overline{L[M]}$
 • NO!
 • If L and \overline{L} are r.e., then L is recursive.
 • There are some r.e. languages (the halting problem, for instance) that are not recursive

16-25: Rice’s Theorem

• Determining if the language accepted by a Turing machine has any non-trivial property is undecidable
 • “Non-Trivial” property means:
 • At least one recursively enumerable language has the property
• Not all recursively enumerable languages have the property

• Example: Is the language accepted by a Turing Machine M regular?

16-26: Rice’s Theorem

• Problem: Is the language defined by the Turing Machine M recursively enumerable?
 • Is this problem decidable?

16-27: Rice’s Theorem

• Problem: Is the language defined by the Turing Machine M recursively enumerable?
 • Is this problem decidable? YES!
 • All recursively enumerable languages are recursively enumerable.
 • The question is “trivial”

16-28: Rice’s Theorem

• Problem: Does the Turing Machine M accept the string w in k computational steps?
 • Is this problem decidable?

16-29: Rice’s Theorem

• Problem: Does the Turing Machine M accept the string w in k computational steps?
 • Is this problem decidable? YES!
 • Problem is not language related – we’re not asking a question about the language that is accepted, but about the language that is accepted within a certain number of steps

16-30: Rice’s Theorem – Proof

• We will prove Rice’s theorem by showing that, for any non-trivial property P, we can reduce the halting problem to the problem of determining if the language accepted by a Turing Machine has Property P.

• Given any Machine M, string w, and non-trivial property P, we will create a new machine M', such that either
 • $L[M']$ has property P if and only if M halts on w
 • $L[M']$ has property P if and only if M does not halt on w

16-31: Rice’s Theorem – Proof

• Let P be some non-trivial property of a language.

• Two cases:
 • The empty language $\{\}$ has the property
 • The empty language $\{\}$ does not have the property

16-32: Rice’s Theorem – Proof

• Properties that the empty language has:
• Regular Languages
• Languages that do not contain the string “aab”
• Languages that are finite

• Properties that the empty language does not have:
 • Languages containing the string “aab”
 • Languages containing at least one string
 • Languages that are infinite

16-33: **Rice’s Theorem – Proof**

• Let \(M \) be any Turing Machine, \(w \) be any input string, and \(P \) be any non-trivial property of a language, such that \(\{} \) has property \(P \).

• Let \(L_{NP} \) be some recursively enumerable language that does not have the property \(P \), and let \(M_{NP} \) be a Turing Machine such that \(L[M_{NP}] = L_{NP} \).

• We will create a machine \(M' \) such that \(M' \) has property \(P \) if and only if \(M \) does not halt on \(w \).

16-34: **Rice’s Theorem – Proof**

• \(M' \):
 • Save input
 • Erase input, simulate running \(M \) on \(w \)
 • Restore input
 • Simulates running \(M_{NP} \) on input

16-35: **Rice’s Theorem – Proof**

• \(M' \):
 • Save input
 • Erase input, simulate running \(M \) on \(w \)
 • Restore input
 • Simulates running \(M_{NP} \) on input

• If \(M \) halts on \(w \), \(L[M'] = L_{NP} \), and \(L[M'] \) does not have property \(P \)

• If \(M \) does not halt on \(w \), \(L[M'] = \{\} \), and \(L[M'] \) does have property \(P \)

16-36: **Rice’s Theorem – Proof**

• Let \(M \) be any Turing Machine, \(w \) be any input string, and \(P \) be any non-trivial property of a language, such that \(\{} \) does not have property \(P \).

• Let \(L_{NP} \) be some recursively enumerable language that does have the property \(P \), and let \(M_P \) be a Turing Machine such that \(L[M_P] = L_P \).

• We will create a machine \(M' \) such that \(M' \) has property \(P \) if and only if \(M \) does halt on \(w \).

16-37: **Rice’s Theorem – Proof**
• M':
 • Save input
 • Erase input, simulate running M on w
 • Restore input
 • Simulates running M_P on input

16-38: Rice’s Theorem – Proof

• M':
 • Save input
 • Erase input, simulate running M on w
 • Restore input
 • Simulates running M_P on input
 • If M halts on w, $L[M'] = L_P$, and $L[M']$ does have property P
 • If M does not halt on w, $L[M'] = \{\}$, and $L[M']$ does not have property P

16-39: Undecidability

• How many undecidable languages are there?
 • A language is a set of strings
 • Set of all languages over Σ^* is the set of all subsets of Σ^*
 • Set of all languages over Σ^* is 2^{Σ^*}

16-40: Undecidability

• How many different languages over Σ^* are there?
 • The set of all languages over an alphabet Σ is 2^{Σ^*}
 • There is a bijection between strings and integers (lexigraphic ordering)
 • Thus, the number of different languages is $2^{\Sigma^*} = |2^\mathbb{N}|$

• How big is $2^\mathbb{N}$?

16-41: Undecidability

• $2^\mathbb{N}$ is uncountable
 • Proof by contradiction (yet another diagonalization!)
 • Assume that there is a bijection between \mathbb{N} and $2^\mathbb{N}$
 • Show that there must be an element of $2^\mathbb{N}$ that is not in the bijection – contradiction!

16-42: $2^\mathbb{N}$ is Uncountable
• Assume that there is a bijection between \mathbb{N} and $2^\mathbb{N}$

 - $0 \{100, 8, 6\}$
 - $1 \{0, 1, 2, 3, 9, 11, 22\}$
 - $2 \{\emptyset\}$
 - $3 \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, \ldots\}$
 - $4 \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, \ldots\}$
 - $5 \{3, 9, 11, 23, 54, 128\}$

 \[\ldots \]

• We will find an element of $2^\mathbb{N}$ that is not in the bijection

16-43: $2^\mathbb{N}$ is Uncountable

• Let S_n be the set mapped to by n in the bijection

• Consider the set $S = \{x : x \in \mathbb{N}, S \notin S_x\}$

 - $0 \{100, 8, 6\}$
 - $1 \{0, 1, 2, 3, 9, 11, 22\}$
 - $2 \{\emptyset\}$
 - $3 \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, \ldots\}$
 - $4 \{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, \ldots\}$
 - $5 \{3, 9, 11, 23, 54, 128\}$

 \[\ldots \]

 $S = \{0, 2, 3, 5, \ldots\}$

16-44: # of Turing Machines

• How many Turing Machines are there?

 • Any Turing Machine can be represented by a finite string of 0’s and 1’s

 • There is a bijection between set of all Turing Machines and \mathbb{N}

 • Countable # of Turing Machines

16-45: Undecidability

• Each language represents a problem

• Each Turing Machine represents a solution to a problem

• There are a countable number of Turing Machines, and an uncountable number of languages

 • Vastly more undecidable problems than decidable problems!