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17-0: Tractable vs. Intractable

® |f a problem is recursive, then there exists a Turing
machine that always halts, and solves it.

® However, a recursive problem may not be
practically solvable
* Problem that takes an exponential amount of
time to solve is not practically solvable for large
problem sizes

® Today, we will focus on problems that are
practically solvable




17-1: Language Class P

® A language L is polynomially decidable if there
exists a polynomially bound Turing machine that
decides it.

® A Turing Machine M is polynomially bound if:
e There exists some polynomial function p(n)
e For any input string w, M always halts within
p(jwl) steps

® The set of languages that are polynomially
decidable is P




17-2: Language Class P

® P is the set of languages that can reasonably be
decided by a computer

e What about n'%, or 10'%%%p?
- Can these running times really be
“reasonably” solvable

e What about n'e¢'os”
- Not bound by any polynomial, but grows very
slowly until n gets quite large




17-3: Language Class P

® P is the set of languages/problems that can
reasonably be solved by a computer

 What about 71100, or 10190000p,2

* Problems that have these kinds of running
times are quite rare

* Even a huge polynomial has a chance at being
solvable for large problems if you throw enough
machines at it — unlike exponential problems,
where there is pretty much no hope for solving
large problems




17-4: Reachability

® Given a Graph G, and two vertices x and vy, is
there a path from z to y in G?

® Note that this is a Problem and not a Language,

though we can easily convert it into a language as
follows:

® [ireachanie = {w : w = en(g)en(x)en(y), there is a
path from z to y in G'}

e Can encode G:
- Numbering all of the vertices
- Give an adjacency matrix, using binary
encoding of each vertex




17-5: Reachability

® | et Al| be the adjacency matrix
¢ A[Z,]] = 1 if link from U; fo U;

for (i=0; i<|V]|; i++) {
Ali,i] = 1;
for (i=0; i < |V]|; i++)
for (j=0; j < [V[|; j++)
for (k=0; k < |V|; k++)
if (A[4,j] && A[j,k]1)
Ali,k] = 1;




17-6: Java/C vs. Turing Machine

® But wait ... that's Java/C code, not a Turing
Machine!

® |[f a C program can execute in n steps, then we can
simulate the C program with a Turing Machine that
takes at most p(n) steps, for some polynomial
function p.

® We will use Java/C style pseudo-code for many of
the following problems




17-7: Euler Cycles

® Given an undirected graph G, is there a cycle that
traverses every edge exactly once?
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17-8: EUler Cycles

® Given an undirected graph G, is there a cycle that
traverses every edge exactly once?
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17-0: Euler Cycles

® We can determine if a graph GG has an Euler cycle
In polynomial time.
® A graph G has an Euler cycle if and only if:
e (5 is connected

e All vertices in G have an even # of adjacent
edges




17-10: Euler Cycles

® Pick any vertex, start following edges (only
following an edge once) until you reach a “dead
end” (no untraversed edges from the current node).

® Must be back at the node you started with
e Why?

® Pick a new node with untraversed edges, create a
new cycle, and splice it in

® Repeat until all edges have been traversead




17-11: Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?
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17-12: Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

O




17-13: Hamiltonian Cycles

® Given an undirected graph G, is there a cycle that
visits every vertex exactly once?

* Very similar to the Euler Cycle problem
* No known polynomial-time solution




17-14: Traveling Salesman

® (Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?
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17-15: Traveling Salesman

® (Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?
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17-16: Decision vs. Optimization

® A Decision Problem has a yes/no answer
* |s there a path from vertex ¢ to vertex j in graph
G?
* |s there an Euler cycle in graph G?
* |s there a Hamiltonian cycle in graph G?
® An Optimization Problem tries to find an optimal

solution, from a choice of several potential
solutions

* What is the cheaptest cycle in a weigted graph?




17-17: Decision vs. Optimization

® (Given an undirected, completely connected graph
G with weighted edges, what is the minimal length
circuit that connects all of the vertices?

* This is an optimization problem, and not a
decision problem

* We can easily convert it into a decision
problem:
- Given a weighted, undirected graph G, is
there a cycle with cost no greater than k£?




17-18: Decision vs. Optimization

® For every optimization problem
* Find the lowest cost solution to a problem

® We can create a similar decision problem
* |s there a solution under cost £7




17-19: Decision vs. Optimization

® |f we can solve the “optimization” version of a
problem in polynomial time, we can solve the
“decision” version of the same problem in
polynomial time.

* Find the optimal solution, check to see if it is
under the limit

® |f we can solve the “decision” version of the
problem, we can solve the “optimization” version of

the same problem
* Modified binary search




17-20: Integer Partition

® Set S of non-negative numbers {a, ...a,}
® |sthereaset P C {1,2,...n} such that

E a; — E a;
1€P 1€ P

® Can we partition the set into two subsets, each of
which has the same sum?




17-21: Integer Partition

e 5 ={3,57,10,15,20}
® Can break S into:

e {3,5,7,15}

e {10,20}




17-22: Integer Partition

o 5 =1{1,4,9,10,15,27}
® No valid partiton
e Sum of all numbers is 66

e Each partition needs to sum to 34 (why?)
e No subset of S sums to 34




17-23: Solving Integer Partition

® [1 =sum of all integers in .S divided by 2
® B(1) ={b < H : bis the sum of some subset of

'@1:50,2 20@3 17@4_301{—36

y ( ) N {0757 177 20722;25,30,35}
® Partition iff H € B(n)




17-24: Solving Integer Partition

® Computing B(n) (inefficient):

BO)=1{0}
for(z =11 <=n;i+ +)
B(i) = B(i — 1) (copy)

for (j =145 < H;j + +)
add j to B(1)

(How might we make this more efficient?)




17-25: Solving Integer Partition

® Computing B(n) (inefficient):

BO)=1{0}
for(1 =1;i <=n;1+ +)
B(i) = B(i — 1) (copy)

for (j =145 < H;j + +)
add j to B(1)

Running time: O(nH ). Polynomial?




17-26: Solving Integer Partition

® Running time: O(nH).
® Not polynomial.

* n integers of size ~ 2"
- n Integers, each of which has ~ n digits

* H~ 2"
 Length of input n?

® Not the most efficient algorithm to solve the
problem

® All known solutions require exponential time,
however




17-27: Unary Integer Partition

® Given a set S of non-negative numbers {a; ...a,},
encoded 1n unary

® |sthereaset P C {1,2,...n} such that
Z a; — Z a;
ieP i P
® This problem can be solved in Polynomial time

® |n fact, the previous algorithm will solve the
problem in polynomial time!

e How can this be?




17-28: Unary Integer Partition

® Given a set S of non-negative numbers {a; ...a,},
encoded 1n unary

® |sthereaset P C {1,2,...n} such that

Sa=Ya
ieP &P
® This problem can be solved in Polynomial time

* We’ve made the problem description
exponentially longer

* In general, it doesn’t matter how you encode a

problem as long as you dont use unary to
encode numbers!




17-20: Satisfiability

® A Boolean Formula in Conjunctive Normal Form
(CNF) is a conjunction of disjunctions.

e (lel\/ﬁlfz)/\(llfg\/ﬁl?_g\/ﬁl?_l)/\(ﬁlf5)
¢ (CE’g\/CEl\/CE5)/\(CE1 \/CE_5\/CE_3)/\(CE5)

® A Clause is a group of variables x; (or negated
variables 7;) connected by ORs (V)

® A Formula is a group of clauses, connected by
ANDs (A)




17-30: Satisfiability

® Satisfiability Problem: Given a formula in
Conjunctive Normal Form, is there a set of truth
values for the variables in the formula which makes
the formula true?
® (5131 \% 5134) N\ (CE_Q \% CE’4) /N\ (333 V 332)/\
(T1 V T3) A (T2 V T3) A (29 V T4)
e Satisfiable: I = T, Loy = F, L3 = T, Ly = F
® (1 V) AT VT Az VT2) A (T1 V x5)
e Not Satisfiable




17-31: 2=-SAT

® 2-SAT is a special case of the satisfiability problem,
where each clause has no more than 2 variables.

® Both of the following problems are instances of
2-SAT

o (x1Vaxy) AN(TaVaxy) A(xsV o)A
(@TIVT) A (T2 VT3) A (22 V Ta)
e (X1 V) AT VT2 A2y VT) A (T1 V xo)




17-32: 2=-SAT

® 2-SAT is in P — given an instance of 2-SAT, we can
determine if the formula is satisfiable in polynomial
time
® |f a variable z; is true:
e Every clause that contains z; Is true.
 For every clause of the form (z; V z;), variable
x; must be true.
 For every clause of the form (z; V 7;), variable
x; must be false.




17-33: 2=-SAT

® 2-SAT is in P — given an instance of 2-SAT, we can
determine if the formula is satisfiable in polynomial
time
® |f a variable z; is false:
e Every clause that contains 7; Is true.
 For every clause of the form (z; V z;), variable
x; must be true.
 For every clause of the form (z; V 7;), variable
x; must be false.

® Once we know the truth value of a single variable,
we can use this information to find the truth value
of many other variables




17-34: 2=-SAT

® (11 Vg ATV axy) A(x3V o)A
(T2 V Tg) A (T2 V Ts) A (22 V T)

o |f L1 IS true ...




17-35: 2=-SAT

o |f L1 IS true ...




17-36: 2=-SAT

® (T, Vaxy) A(x3V ay)A
(T4) A\ (T3 V T3) A (29 V T3)

® |[f T1 IS true

® Then x, must be false ...




17-37: 2=-SAT

® (T,VaEr) A (13 V 29)A

EDON (T V T3) M V-27)
® |[f T1 IS true
® Then x, must be false ...




17-38: 2=-SAT

® (T3) A (x3V x9)A
(T2 V T3)
® |f ;IS true
® Then x, must be false

® Then x, must be false ...




17-30: 2=-SAT

® (o) N(x3VaEs) A
\v‘/_2 \/ ,1,_3>

® |f 1, IS true

® Then x, must be false

® Then x, must be false ...




17-40: 2=-SAT

® (x3)

® |f ;IS true

® Then x, must be false
® Then x, must be false
® Then x5 must be true ...




17-41: 2=-SAT

* {#3)

® |f ;IS true

® Then x, must be false

® Then x, must be false

® Then x; must be true

® And the formula is satisfiable




17-42: Algorithm to solve 2-SAT

® Pick any variable z;. Set it to true

® Modify the formula, based on x; being true:
* Remove any clause that contains x;
 For any clause of the form (z;, x;), Variable z;

must be true. Recursively modify the formula
based on z; being true.

 For any clause of the form (z;, z;), Variable z;
must be false. Recursively modify the formula
based on x; being false.




17-43: Algorithm to solve 2-SAT

® Pick any variable z;. Set it to true
® Modify the formula, based on x; being true:

® When you are done with the modification, one of 3
cases may occur:

e All of the variables are set to some value, and
the formula is thus satisfiable

e Several of the clauses have been removed,
leaving you with a smaller problem. Pick
another variable and repeat

* The choice of True for z, leads to a
contradiction: some variable x; must be both

true and false. In this case, restore the old
formula, set x; to false, and repeat




17-44: Algorithm to solve 2-SAT

® Example:

® (x1Vua3) A (TyVas) A (TyVI3)A
(T1 V 24) A (21 V 23)

® First, we pick x, set it to true ...




17-45: Algorithm to solve 2-SAT

® Example:

® (Va3 ATy V x3) A\ (Ty V T3)A

(ﬂ?f VZE4)/\ (331 N 332)

® First, we pick x, set it to true
® Which means than x, must be true ...




17-46: Algorithm to solve 2-SAT

® Example:

%A(@V%M(x—gvx—gm

(5= \ /o A (o N/ o
T vw4} \4/1 V.,b2}

® First, we pick x, set it to true
® Which means than x, must be true ...
® And we have a smaller problem.




17-47: Algorithm to solve 2-SAT

® Example:

* (T3 Vx3) A (T2 V T3)

® First, we pick x, set it to true

® Which means than x, must be true
® And we have a smaller problem.

® Next, pick x,, set it to true ...




17-48: Algorithm to solve 2-SAT

® Example:

® (F3Vr3) A (TZVT3)

® First, we pick x, set it to true

® Which means than x, must be true

® And we have a smaller problem.
® Next, pick x,, set it to true ...




17-49: Algorithm to solve 2-SAT

® Example:

® (F3Vr3) A (TZVT3)

® First, we pick x, set it to true

® Which means than x, must be true

® And we have a smaller problem.
® Next, pick x4, set it to true
® and x; must be both true and false. Whoops!




17-50: Algorithm to solve 2-SAT

® Example:

* (T3 Vx3) A (T2 V T3)

® First, we pick x, set it to true

® Which means than x, must be true
® And we have a smaller problem.

® Next, pick x4, set it to true

® and x; must be both true and false.
® Back up, set z, to false ...




17-51: Algorithm to solve 2-SAT

® Example:
® (ZyVEg) N\ A{Fr V- T3)

® First, we pick x, set it to true

® Which means than x, must be true
® And we have a smaller problem.

® Next, pick x4, set it to true

® and x; must be both true and false.
® Back up, set z, to false

® And all clauses are satisfied (value of x5 doesn’t
matter)




17-52: Algorithm to solve 2-SAT

® Example:

® (T Vo) N(TIVTo) A (T3Vay) A (TzVTy) A
(21 V x3)

® First, we pick z;, and set it to true




17-53: Algorithm to solve 2-SAT

® Example:
® (FTVxy) A (FTVT2) A (T3 V xy) A (T3 V Tyh) A

[ N/ p )
(LT VvV 13

® First, we pick z;, and set it to true
® And z, must be both true and false. Back up ...




17-54: Algorithm to solve 2-SAT

® Example:

® (T Vo) N(TIVTo) A (T3Vay) A (TzVTy) A
(21 V x3)

® First, we pick z;, and set it to true

® And z, must be both true and false. Back up

® And set x, to be false ...




17-55: Algorithm to solve 2-SAT

® Example:

® (T Vo) NM{TTVT3) A (T3 V ay) A (T3 VTh) A
(1V3)

® First, we pick x;, and set it to true

® And z, must be both true and false. Back up

® And set x; to be false

® And x; must be true ...




17-56: Algorithm to solve 2-SAT

® Example:

® (FV-a9) N{TT VT3 A (FT3Vy) N (F3VT4) A
(#1VT3)

® First, we pick z;, and set it to true

® And z, must be both true and false. Back up

® And set z; to be false
® And x; must be true
® And x, must be both true and false. No solution




17-57: Algorithm to solve 2-SAT

® Once we've decided to set a variable to true or
false, the “marking off” phase takes a polynomial
number of steps

® Each variable will be chosen to be set to true no
more than once, and chosen to be set to false no
more than once more than once

® TJotal running time is polynomial




17-58: 3=-SAT

® 3-SAT is a special case of the satisfiability problem,
where each clause has no more than 3 variables.

® 3-SAT has no known polynomial solution

e Can't really do any better than trying all
possible truth assignments to all variables, and
see if they work.
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