If a problem is *recursive*, then there exists a Turing machine that always halts, and solves it.

However, a recursive problem may not be practically solvable.

- Problem that takes an exponential amount of time to solve is not practically solvable for large problem sizes

Today, we will focus on problems that are practically solvable.
A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.

A Turing Machine M is polynomially bound if:

1. There exists some polynomial function $p(n)$
2. For any input string w, M always halts within $p(|w|)$ steps

The set of languages that are polynomially decidable is P.
17-2: Language Class \(P \)

- **\(P \)** is the set of languages that can reasonably be decided by a computer
 - What about \(n^{100} \), or \(10^{100000}n^2 \)?
 - Can these running times really be “reasonably” solvable
 - What about \(n^\log\log n \)?
 - Not bound by any polynomial, but grows very slowly until \(n \) gets quite large
P is the set of languages/problems that can reasonably be solved by a computer

- What about n^{100}, or $10^{100000}n^2$?
- Problems that have these kinds of running times are quite rare
- Even a huge polynomial has a chance at being solvable for large problems if you throw enough machines at it – unlike exponential problems, where there is pretty much no hope for solving large problems
17-4: Reachability

- Given a Graph G, and two vertices x and y, is there a path from x to y in G?
- Note that this is a *Problem* and not a *Language*, though we can easily convert it into a language as follows:
 - $L_{reachable} = \{ w : w = en(g)en(x)en(y), \text{there is a path from } x \text{ to } y \text{ in } G \}$
 - Can encode G:
 - Numbering all of the vertices
 - Give an adjacency matrix, using binary encoding of each vertex
17-5: Reachability

• Let $A[]$ be the adjacency matrix
 • $A[i, j] = 1$ if link from v_i to v_j

```plaintext
for (i=0; i<|V|; i++) {
    A[i,i] = 1;
    for (j=0; j < |V|; j++)
        A[i,j] = 1;
        for (k=0; k < |V|; k++)
            if (A[i,j] && A[j,k])
                A[i,k] = 1;
}
```
But wait ... that’s Java/C code, not a Turing Machine!

If a C program can execute in n steps, then we can simulate the C program with a Turing Machine that takes at most $p(n)$ steps, for some polynomial function p.

We will use Java/C style pseudo-code for many of the following problems.
Given an undirected graph G, is there a cycle that traverses every edge exactly once?
17-8: Euler Cycles

- Given an undirected graph G, is there a cycle that traverses every edge exactly once?
17-9: Euler Cycles

- We can determine if a graph G has an Euler cycle in polynomial time.
- A graph G has an Euler cycle if and only if:
 - G is connected
 - All vertices in G have an even # of adjacent edges
Euler Cycles

- Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed edges from the current node).
- Must be back at the node you started with
 - Why?
- Pick a new node with untraversed edges, create a new cycle, and splice it in
- Repeat until all edges have been traversed
Given an undirected graph G, is there a cycle that visits every vertex exactly once?
Given an undirected graph G, is there a cycle that visits every vertex exactly once?
Given an undirected graph G, is there a cycle that visits every vertex exactly once?

- Very similar to the Euler Cycle problem
- No known polynomial-time solution
Given an undirected, completely connected graph \(G \) with weighted edges, what is the minimal length circuit that connects all of the vertices?
Given an undirected, completely connected graph \(G \) with weighted edges, what is the minimal length circuit that connects all of the vertices?
A *Decision Problem* has a yes/no answer

- Is there a path from vertex i to vertex j in graph G?
- Is there an Euler cycle in graph G?
- Is there a Hamiltonian cycle in graph G?

An *Optimization Problem* tries to find an optimal solution, from a choice of several potential solutions

- What is the cheapest cycle in a weighted graph?
17-17: Decision vs. Optimization

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?
 • This is an *optimization* problem, and not a *decision* problem
 • We can easily convert it into a decision problem:
 • Given a weighted, undirected graph G, is there a cycle with cost no greater than k?
For every optimization problem
 • Find the lowest cost solution to a problem
We can create a similar decision problem
 • Is there a solution under cost k?
If we can solve the “optimization” version of a problem in polynomial time, we can solve the “decision” version of the same problem in polynomial time.

- Find the optimal solution, check to see if it is under the limit

If we can solve the “decision” version of the problem, we can solve the “optimization” version of the same problem

- Modified binary search
Set S of non-negative numbers $\{a_1 \ldots a_n\}$

Is there a set $P \subseteq \{1, 2, \ldots n\}$ such that

$$\sum_{i \in P} a_i = \sum_{i \notin P} a_i$$

Can we partition the set into two subsets, each of which has the same sum?
17-21: Integer Partition

- \(S = \{3, 5, 7, 10, 15, 20\} \)
- Can break \(S \) into:
 - \(\{3, 5, 7, 15\} \)
 - \(\{10, 20\} \)
17-22: Integer Partition

- \(S = \{1, 4, 9, 10, 15, 27\} \)
- No valid partition
 - Sum of all numbers is 66
 - Each partition needs to sum to 34 (why?)
 - No subset of \(S \) sums to 34
17-23: Solving Integer Partition

- \(H = \text{sum of all integers in } S \text{ divided by 2} \)
- \(B(i) = \{ b \leq H : b \text{ is the sum of some subset of } a_1 \ldots a_i \} \)
 - \(a_1 = 5, a_2 = 20, a_3 = 17, a_4 = 30, H = 36 \)
 - \(B(0) = \{0\} \)
 - \(B(1) = \{0, 5\} \)
 - \(B(2) = \{0, 5, 20, 25\} \)
 - \(B(3) = \{0, 5, 17, 20, 22, 25\} \)
 - \(B(4) = \{0, 5, 17, 20, 22, 25, 30, 35\} \)
- Partition iff \(H \in B(n) \)
17-24: Solving Integer Partition

- Computing $B(n)$ (inefficient):

$B(0) = \{0\}$

for $(i = 1; i <= n; i + +)$

$B(i) = B(i - 1)$

(copy)

for $(j = i; j < H; j + +)$

if $(j - a_i) \in B(i - 1)$

add j to $B(i)$

(How might we make this more efficient?)
17-25: Solving Integer Partition

- Computing $B(n)$ (inefficient):

 \[B(0) = \{0\} \]

 for \((i = 1; i <= n; i++)\)

 \[B(i) = B(i - 1) \] (copy)

 for \((j = i; j < H; j++)\)

 if \((j - a_i) \in B(i - 1)\)

 add \(j\) to \(B(i)\)

Running time: $O(nH)$. Polynomial?
Solving Integer Partition

- **Running time:** $O(nH)$.
- **Not** polynomial.
 - n integers of size $\approx 2^n$
 - n integers, each of which has $\approx n$ digits
 - $H \approx \frac{n}{2}2^n$
 - Length of input n^2
- Not the most efficient algorithm to solve the problem
- All known solutions require exponential time, however
Unary Integer Partition

- Given a set S of non-negative numbers $\{a_1 \ldots a_n\}$, encoded in unary
- Is there a set $P \subseteq \{1, 2, \ldots n\}$ such that
 \[
 \sum_{i \in P} a_i = \sum_{i \notin P} a_i
 \]
- This problem can be solved in Polynomial time
- In fact, the previous algorithm will solve the problem in polynomial time!
 - How can this be?
Unary Integer Partition

- Given a set S of non-negative numbers $\{a_1 \ldots a_n\}$, encoded in unary
- Is there a set $P \subseteq \{1, 2, \ldots n\}$ such that

$$\sum_{i \in P} a_i = \sum_{i \notin P} a_i$$

- This problem can be solved in Polynomial time
 - We’ve made the problem description exponentially longer
 - In general, it doesn’t matter how you encode a problem as long as you don’t use unary to encode numbers!
17-29: **Satisfiability**

- A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.
 - \((x_1 \lor x_2) \land (x_3 \lor \overline{x_2} \lor \overline{x_1}) \land (x_5)\)
 - \((x_3 \lor x_1 \lor x_5) \land (x_1 \lor \overline{x_5} \lor \overline{x_3}) \land (x_5)\)

- A Clause is a group of variables \(x_i\) (or negated variables \(\overline{x_j}\)) connected by ORs (\(\lor\))

- A Formula is a group of clauses, connected by ANDs (\(\land\))
Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the variables in the formula which makes the formula true?

\[(x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2)\land (\overline{x_1} \lor \overline{x_4}) \land (\overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_4})\]

- Satisfiable: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F\)

\[(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)\]

- Not Satisfiable
2-SAT

- 2-SAT is a special case of the satisfiability problem, where each clause has no more than 2 variables.
- Both of the following problems are instances of 2-SAT
 - \((x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2)\) \land
 \((\overline{x_1} \lor x_4) \land (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_4})\)
 - \((x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)\)
2-SAT

- 2-SAT is in \(P \) – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time.
- If a variable \(x_i \) is true:
 - Every clause that contains \(x_i \) is true.
 - For every clause of the form \((\overline{x_i} \lor x_j) \), variable \(x_j \) must be true.
 - For every clause of the form \((\overline{x_i} \lor \overline{x_j}) \), variable \(x_j \) must be false.
17-33: **2-SAT**

- 2-SAT is in \mathbb{P} – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time.

- If a variable x_i is false:
 - Every clause that contains $\overline{x_i}$ is true.
 - For every clause of the form $(x_i \lor x_j)$, variable x_j must be true.
 - For every clause of the form $(x_i \lor \overline{x_j})$, variable x_j must be false.

- Once we know the truth value of a single variable, we can use this information to find the truth value of many other variables.
17-34: 2-SAT

- \((x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2) \land (\overline{x_1} \lor \overline{x_4}) \land (\overline{x_2} \lor x_3) \land (x_2 \lor \overline{x_4})\)

- If \(x_1\) is true ...
If x_1 is true ...
If x_1 is true

Then x_4 must be false ...
17-37: **2-SAT**

- \((\overline{x_2} \lor x_4) \land (x_3 \lor x_2) \land (\overline{x_4}) \land (\overline{x_2} \lor \overline{x_3}) \land (x_2 \lor \overline{x_4})\)

- If \(x_1\) is true

- Then \(x_4\) must be false ...
(\overline{x_2}) \land (x_3 \lor x_2) \land (x_2 \lor \overline{x_3})

If \(x_1\) is true

Then \(x_4\) must be false

Then \(x_2\) must be false ...
17-39: **2-SAT**

- \[(\overline{x_2}) \land (x_3 \lor \overline{x_2}) \land (\overline{x_2} \lor \overline{x_3}) \]
- If \(x_1 \) is true
- Then \(x_4 \) must be false
- Then \(x_2 \) must be false ...
17-40: 2-SAT

- (x_3)
- If x_1 is true
- Then x_4 must be false
- Then x_2 must be false
- Then x_3 must be true ...
If x_1 is true
Then x_4 must be false
Then x_2 must be false
Then x_3 must be true
And the formula is satisfiable
17-42: Algorithm to solve 2-SAT

- Pick any variable x_i. Set it to true.
- Modify the formula, based on x_i being true:
 - Remove any clause that contains x_i.
 - For any clause of the form $(\overline{x_i}, x_j)$, Variable x_j must be true. Recursively modify the formula based on x_j being true.
 - For any clause of the form $(\overline{x_i}, \overline{x_j})$, Variable x_j must be false. Recursively modify the formula based on x_j being false.
17-43: Algorithm to solve 2-SAT

- Pick any variable x_i. Set it to true
- Modify the formula, based on x_i being true:
- When you are done with the modification, one of 3 cases may occur:
 - All of the variables are set to some value, and the formula is thus satisfiable
 - Several of the clauses have been removed, leaving you with a smaller problem. Pick another variable and repeat
 - The choice of True for x_i leads to a contradiction: some variable x_j must be both true and false. In this case, restore the old formula, set x_i to false, and repeat
Example:

\((x_1 \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_4) \land (x_1 \lor x_2)\)

First, we pick \(x_1\), set it to true ...
17-45: **Algorithm to solve 2-SAT**

- **Example:**

 \[
 \left(x_1 \lor x_3 \right) \land \left(\overline{x_2} \lor x_3 \right) \land \left(\overline{x_2} \lor \overline{x_3} \right) \land \\
 \left(\overline{x_1} \lor x_4 \right) \land \left(x_1 \lor \overline{x_2} \right)
 \]

- **First, we pick** \(x_1 \), **set it to true**

- **Which means than** \(x_4 \) **must be true ...**
17-46: Algorithm to solve 2-SAT

- **Example:**
 \[
 (x_1 \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \land \\
 (\overline{x_1} \lor x_4) \land (x_1 \lor \overline{x_2})
 \]

- First, we pick \(x_1\), set it to true
- Which means than \(x_4\) must be true ...
- And we have a smaller problem.
Example:

\[(\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\]

First, we pick \(x_1\), set it to true

Which means than \(x_4\) must be true

And we have a smaller problem.

Next, pick \(x_2\), set it to true ...
Example:

\[(\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\]

First, we pick \(x_1\), set it to true

Which means than \(x_4\) must be true

And we have a smaller problem.

Next, pick \(x_2\), set it to true ...
Algorithm to solve 2-SAT

Example:

\[(\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\]

First, we pick \(x_1 \), set it to true

Which means than \(x_4 \) must be true

And we have a smaller problem.

Next, pick \(x_2 \), set it to true

and \(x_3 \) must be both true and false. Whoops!
Example:

\[(\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\]

First, we pick \(x_1\), set it to true
Which means than \(x_4\) must be true
And we have a smaller problem.
Next, pick \(x_2\), set it to true
and \(x_3\) must be both true and false.
Back up, set \(x_2\) to false...
17-51: Algorithm to solve 2-SAT

- Example:

 \[(\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\]

- First, we pick \(x_1\), set it to true
- Which means than \(x_4\) must be true
- And we have a smaller problem.
- Next, pick \(x_2\), set it to true
- and \(x_3\) must be both true and false.
- Back up, set \(x_2\) to false
- And all clauses are satisfied (value of \(x_3\) doesn’t matter)
Example:

$$(\overline{x_1} \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_3} \lor x_4) \land (\overline{x_3} \lor \overline{x_4}) \land (x_1 \lor x_3)$$

First, we pick x_1, and set it to true
Algorithm to solve 2-SAT

Example:

\[(\overline{x}_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4) \land (x_1 \lor \overline{x}_3) \]

First, we pick \(x_1 \), and set it to true

And \(x_2 \) must be both true and false. Back up ...
Example:

\[
(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_3 \lor x_4) \land (\overline{x_3} \lor \overline{x_4}) \land \ (x_1 \lor x_3)
\]

First, we pick \(x_1\), and set it to true

And \(x_2\) must be both true and false. Back up

And set \(x_1\) to be false ...
17-55: Algorithm to solve 2-SAT

- Example:

\[
(x_1 \lor x_2) \land (\overline{x}_1 \lor \overline{x}_2) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4) \land \\
(\overline{x}_1 \lor x_3)
\]

- First, we pick \(x_1\), and set it to true
- And \(x_2\) must be both true and false. Back up
- And set \(x_1\) to be false
- And \(x_3\) must be true ...
Algorithm to solve 2-SAT

- Example:
 \[(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (\overline{x_3} \lor x_4) \land (\overline{x_3} \lor \overline{x_4}) \land (x_1 \lor x_3)\]
 - First, we pick \(x_1\), and set it to true
 - And \(x_2\) must be both true and false. Back up
 - And set \(x_1\) to be false
 - And \(x_3\) must be true
 - And \(x_4\) must be both true and false. No solution
Once we’ve decided to set a variable to true or false, the “marking off” phase takes a polynomial number of steps.

Each variable will be chosen to be set to true no more than once, and chosen to be set to false no more than once more than once.

Total running time is polynomial.
3-SAT

- 3-SAT is a special case of the satisfiability problem, where each clause has no more than 3 variables.
- 3-SAT has no known polynomial solution
 - Can’t really do any better than trying all possible truth assignments to all variables, and see if they work.