17-0: **Tractable vs. Intractable**

- If a problem is *recursive*, then there exists a Turing machine that always halts, and solves it.
- However, a recursive problem may not be practically solvable
 - Problem that takes an exponential amount of time to solve is not practically solvable for large problem sizes
 - Today, we will focus on problems that are practically solvable

17-1: **Language Class P**

- A language L is polynomially decidable if there exists a polynomially bound Turing machine that decides it.
- A Turing Machine M is polynomially bound if:
 - There exists some polynomial function $p(n)$
 - For any input string w, M always halts within $p(|w|)$ steps
- The set of languages that are polynomially decidable is P

17-2: **Language Class P**

- P is the set of languages that can reasonably be decided by a computer
 - What about n^{100}, or $10^{100000}n^2$
 - Can these running times really be “reasonably” solvable
 - What about $n^\log\log n$
 - Not bound by any polynomial, but grows very slowly until n gets quite large

17-3: **Language Class P**

- P is the set of languages/problems that can reasonably be solved by a computer
 - What about n^{100}, or $10^{100000}n^2$
 - Problems that have these kinds of running times are quite rare
 - Even a huge polynomial has a chance at being solvable for large problems if you throw enough machines at it – unlike exponential problems, where there is pretty much no hope for solving large problems

17-4: **Reachability**

- Given a Graph G, and two vertices x and y, is there a path from x to y in G?
- Note that this is a *Problem* and not a *Language*, though we can easily convert it into a language as follows:
- $L_{\text{reachable}} = \{w : w = \text{en}(y)\text{en}(x)\text{en}(y), \text{there is a path from } x \text{ to } y \text{ in } G\}$
 - Can encode G:
 - Numbering all of the vertices
 - Give an adjacency matrix, using binary encoding of each vertex

17-5: **Reachability**
• Let $A[]$ be the adjacency matrix
 • $A[i,j] = 1$ if link from v_i to v_j

```java
for (i=0; i<|V|; i++) {
    A[i,i] = 1;
    for (j=0; j < |V|; j++)
        for (k=0; k < |V|; k++)
            if (A[i,j] && A[j,k])
                A[i,k] = 1;
}
```

17-6: Java/C vs. Turing Machine

• But wait ... that’s Java/C code, not a Turing Machine!
• If a C program can execute in n steps, then we can simulate the C program with a Turing Machine that takes at most $p(n)$ steps, for some polynomial function p.
• We will use Java/C style pseudo-code for many of the following problems

17-7: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?

17-8: Euler Cycles

• Given an undirected graph G, is there a cycle that traverses every edge exactly once?
17-9: **Euler Cycles**

- We can determine if a graph G has an Euler cycle in polynomial time.

- A graph G has an Euler cycle if and only if:
 - G is connected
 - All vertices in G have an even # of adjacent edges

17-10: **Euler Cycles**

- Pick any vertex, start following edges (only following an edge once) until you reach a “dead end” (no untraversed edges from the current node).

- Must be back at the node you started with
 - Why?

- Pick a new node with untraversed edges, create a new cycle, and splice it in

- Repeat until all edges have been traversed

17-11: **Hamiltonian Cycles**

- Given an undirected graph G, is there a cycle that visits every vertex exactly once?
• Given an undirected graph G, is there a cycle that visits every vertex exactly once?

 • Very similar to the Euler Cycle problem

 • No known polynomial-time solution

17-14: **Traveling Salesman**

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?

17-15: **Traveling Salesman**

• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?

17-16: **Decision vs. Optimization**

• A *Decision Problem* has a yes/no answer

 • Is there a path from vertex i to vertex j in graph G?

 • Is there an Euler cycle in graph G?

 • Is there a Hamiltonian cycle in graph G?

• An *Optimization Problem* tries to find an optimal solution, from a choice of several potential solutions

 • What is the cheapest cycle in a weighted graph?
• Given an undirected, completely connected graph G with weighted edges, what is the minimal length circuit that connects all of the vertices?
 • This is an optimization problem, and not a decision problem
 • We can easily convert it into a decision problem:
 • Given a weighted, undirected graph G, is there a cycle with cost no greater than k?

17-18: **Decision vs. Optimization**

• For every optimization problem
 • Find the lowest cost solution to a problem
• We can create a similar decision problem
 • Is there a solution under cost k?

17-19: **Decision vs. Optimization**

• If we can solve the “optimization” version of a problem in polynomial time, we can solve the “decision” version of the same problem in polynomial time.
 • Find the optimal solution, check to see if it is under the limit
• If we can solve the “decision” version of the problem, we can solve the “optimization” version of the same problem
 • Modified binary search

17-20: **Integer Partition**

• Set S of non-negative numbers $\{a_1 \ldots a_n\}$
• Is there a set $P \subseteq \{1, 2, \ldots n\}$ such that
 \[
 \sum_{i \in P} a_i = \sum_{i \notin P} a_i
 \]
• Can we partition the set into two subsets, each of which has the same sum?

17-21: **Integer Partition**

• $S = \{3, 5, 7, 10, 15, 20\}$
• Can break S into:
 • $\{3, 5, 7, 15\}$
 • $\{10, 20\}$

17-22: **Integer Partition**

• $S = \{1, 4, 9, 10, 15, 27\}$
• No valid partition
 • Sum of all numbers is 66
 • Each partition needs to sum to 34 (why?)
• No subset of \(S \) sums to 34

17-23: **Solving Integer Partition**

• \(H = \) sum of all integers in \(S \) divided by 2

• \(B(i) = \{ b \leq H : b \) is the sum of some subset of \(a_1 \ldots a_i \}\)

 • \(a_1 = 5, a_2 = 20, a_3 = 17, a_4 = 30, H = 36 \)

 • \(B(0) = \{0\} \)

 • \(B(1) = \{0, 5\} \)

 • \(B(2) = \{0, 5, 20, 25\} \)

 • \(B(3) = \{0, 5, 17, 20, 22, 25\} \)

 • \(B(4) = \{0, 5, 17, 20, 22, 25, 30, 35\} \)

• Partition iff \(H \in B(n) \)

17-24: **Solving Integer Partition**

• Computing \(B(n) \) (inefficient):

\[
B(0) = \{0\}
\]

for (\(i = 1; i <= n; i += 1 \))

\[
B(i) = B(i-1) \quad \text{(copy)}
\]

for (\(j = i; j < H; j += 1 \))

if (\(j - a_i \) \in \(B(i-1) \))

add \(j \) to \(B(i) \)

(How might we make this more efficient?)

17-25: **Solving Integer Partition**

• Computing \(B(n) \) (inefficient):

\[
B(0) = \{0\}
\]

for (\(i = 1; i <= n; i += 1 \))

\[
B(i) = B(i-1) \quad \text{(copy)}
\]

for (\(j = i; j < H; j += 1 \))

if (\(j - a_i \) \in \(B(i-1) \))

add \(j \) to \(B(i) \)

Running time: \(O(nH) \). Polynomial?

17-26: **Solving Integer Partition**

• Running time: \(O(nH) \).

• Not polynomial.

 • \(n \) integers of size \(\approx 2^n \)

 • \(n \) integers, each of which has \(\approx n \) digits

 • \(H \approx \frac{n}{2}2^n \)

 • Length of input \(n^2 \)
• Not the most efficient algorithm to solve the problem
• All known solutions require exponential time, however

17-27: Unary Integer Partition
• Given a set \(S \) of non-negative numbers \(\{a_1 \ldots a_n\} \), encoded in unary
• Is there a set \(P \subseteq \{1, 2, \ldots n\} \) such that
 \[
 \sum_{i \in P} a_i = \sum_{i \not\in P} a_i
 \]
• This problem can be solved in Polynomial time
• In fact, the previous algorithm will solve the problem in polynomial time!
 • How can this be?

17-28: Unary Integer Partition
• Given a set \(S \) of non-negative numbers \(\{a_1 \ldots a_n\} \), encoded in unary
• Is there a set \(P \subseteq \{1, 2, \ldots n\} \) such that
 \[
 \sum_{i \in P} a_i = \sum_{i \not\in P} a_i
 \]
• This problem can be solved in Polynomial time
 • We’ve made the problem description exponentially longer
 • In general, it doesn’t matter how you encode a problem as long as you don’t use unary to encode numbers!

17-29: Satisfiability
• A Boolean Formula in Conjunctive Normal Form (CNF) is a conjunction of disjunctions.
 • \((x_1 \lor x_2) \land (x_3 \lor \overline{x_2} \lor \overline{x_1}) \land (x_5)\)
 • \((x_3 \lor x_1 \lor x_5) \land (x_1 \lor \overline{x_5} \lor \overline{x_3}) \land (x_5)\)
• A Clause is a group of variables \(x_i \) (or negated variables \(\overline{x_j} \)) connected by ORs (\(\lor \))
• A Formula is a group of clauses, connected by ANDs (\(\land \))

17-30: Satisfiability
• Satisfiability Problem: Given a formula in Conjunctive Normal Form, is there a set of truth values for the variables in the formula which makes the formula true?
 • \((x_1 \lor x_4) \land (\overline{x_2} \lor x_4) \land (x_3 \lor x_2) \land (\overline{x_1} \lor \overline{x_4}) \land (x_2 \lor \overline{x_3})\)
 • Satisfiable: \(x_1 = T, x_2 = F, x_3 = T, x_4 = F \)
 • \((x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor x_2)\)
 • Not Satisfiable

17-31: 2-SAT
• 2-SAT is a special case of the satisfiability problem, where each clause has no more than 2 variables.

• Both of the following problems are instances of 2-SAT

 17-32: 2-SAT

 • $(x_1 \lor x_4) \land (x_2 \lor x_4) \land (x_3 \lor x_2) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (x_2 \lor x_4)$

 • $(x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_1 \lor x_2) \land (x_1 \lor x_2)$

17-33: 2-SAT

• 2-SAT is in P – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time

 If a variable x_i is true:

 • Every clause that contains x_i is true.
 • For every clause of the form $(\overline{x_i} \lor x_j)$, variable x_j must be true.
 • For every clause of the form $(x_i \lor \overline{x_j})$, variable x_j must be false.

17-34: 2-SAT

• 2-SAT is in P – given an instance of 2-SAT, we can determine if the formula is satisfiable in polynomial time

 If a variable x_i is false:

 • Every clause that contains $\overline{x_i}$ is true.
 • For every clause of the form $(\overline{x_i} \lor x_j)$, variable x_j must be true.
 • For every clause of the form $(x_i \lor \overline{x_j})$, variable x_j must be false.

 • Once we know the truth value of a single variable, we can use this information to find the truth value of many other variables

17-35: 2-SAT

• $(x_1 \lor x_4) \land (x_2 \lor x_4) \land (x_3 \lor x_2) \land (x_1 \lor x_4) \land (x_2 \lor x_3) \land (x_2 \lor x_4)$

 • If x_1 is true ...

17-36: 2-SAT

• $(x_2 \lor x_4) \land (x_2 \lor x_4) \land (x_3 \lor x_2) \land (x_2 \lor x_4)$

 • If x_1 is true ...

 • Then x_4 must be false ...
17-37: 2-SAT

- \((x_2 \vee x_3) \land (x_3 \lor x_2) \land \neg(x_2 \lor x_2) / (x_2 \lor x_2)\)

- If \(x_1\) is true
- Then \(x_4\) must be false ...

17-38: 2-SAT

- \((x_2) \land (x_3 \lor x_2) \land \neg(x_2 \lor x_3) / (x_2 \lor x_3)\)

- If \(x_1\) is true
- Then \(x_4\) must be false
- Then \(x_2\) must be false ...

17-39: 2-SAT

- \((x_2) \land (x_3 \lor x_2) \land \neg(x_2 \lor x_3) / (x_2 \lor x_3)\)

- If \(x_1\) is true
- Then \(x_4\) must be false
- Then \(x_2\) must be false ...

17-40: 2-SAT

- \((x_3)\)

- If \(x_1\) is true
- Then \(x_4\) must be false
- Then \(x_2\) must be false
- Then \(x_3\) must be true ...

17-41: 2-SAT

- \((x_3)\)

- If \(x_1\) is true
- Then \(x_4\) must be false
- Then \(x_2\) must be false
- Then \(x_3\) must be true
- And the formula is satisfiable

17-42: Algorithm to solve 2-SAT
• Pick any variable \(x_i\). Set it to true

• Modify the formula, based on \(x_i\) being true:

 • Remove any clause that contains \(x_i\)

 • For any clause of the form \((\overline{x_i}, x_j)\), Variable \(x_j\) must be true. Recursively modify the formula based on \(x_j\) being true.

 • For any clause of the form \((\overline{x_i}, \overline{x_j})\), Variable \(x_j\) must be false. Recursively modify the formula based on \(x_j\) being false.

17-43: **Algorithm to solve 2-SAT**

• Pick any variable \(x_i\). Set it to true

• Modify the formula, based on \(x_i\) being true:

 • When you are done with the modification, one of 3 cases may occur:

 • All of the variables are set to some value, and the formula is thus satisfiable

 • Several of the clauses have been removed, leaving you with a smaller problem. Pick another variable and repeat

 • The choice of True for \(x_i\) leads to a contradiction: some variable \(x_j\) must be both true and false. In this case, restore the old formula, set \(x_i\) to false, and repeat

17-44: **Algorithm to solve 2-SAT**

• Example:

\[
(x_1 \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_4) \land (x_1 \lor x_2)
\]

• First, we pick \(x_1\), set it to true ...

17-45: **Algorithm to solve 2-SAT**

• Example:

\[
(x_1 \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_4) \land (\overline{x_1} \lor \overline{x_2})
\]

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true ...

17-46: **Algorithm to solve 2-SAT**

• Example:

\[
(x_1 \lor x_3) \land (\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor x_4) \land (x_1 \lor x_2)
\]

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true ...
• And we have a smaller problem.

17-47: Algorithm to solve 2-SAT

• Example:
 \((\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\)

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true

• And we have a smaller problem.

• Next, pick \(x_2\), set it to true ...

17-48: Algorithm to solve 2-SAT

• Example:
 \((\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\)

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true

• And we have a smaller problem.

• Next, pick \(x_2\), set it to true ...

17-49: Algorithm to solve 2-SAT

• Example:
 \((\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\)

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true

• And we have a smaller problem.

• Next, pick \(x_2\), set it to true

• and \(x_3\) must be both true and false. Whoops!

17-50: Algorithm to solve 2-SAT

• Example:
 \((\overline{x_2} \lor x_3) \land (\overline{x_2} \lor \overline{x_3})\)

• First, we pick \(x_1\), set it to true

• Which means than \(x_4\) must be true

• And we have a smaller problem.

• Next, pick \(x_2\), set it to true
• and x_3 must be both true and false.
• Back up, set x_2 to false ...

17-51: Algorithm to solve 2-SAT

• Example:
 • $(x_1 \lor x_2) \land (x_1 \lor x_3) \land (x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_3)$
 • First, we pick x_1, set it to true
 • Which means than x_4 must be true
 • And we have a smaller problem.
 • Next, pick x_2, set it to true
 • and x_3 must be both true and false.
 • Back up, set x_2 to false
 • And all clauses are satisfied (value of x_3 doesn’t matter)

17-52: Algorithm to solve 2-SAT

• Example:
 • $(x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_3)$
 • First, we pick x_1, and set it to true

17-53: Algorithm to solve 2-SAT

• Example:
 • $(x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_3)$
 • First, we pick x_1, and set it to true
 • And x_2 must be both true and false. Back up ...

17-54: Algorithm to solve 2-SAT

• Example:
 • $(x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_3)$
 • First, we pick x_1, and set it to true
 • And x_2 must be both true and false. Back up
 • And set x_1 to be false ...

17-55: Algorithm to solve 2-SAT

• Example:
 • $(x_1 \lor x_2) \land (x_1 \lor x_2) \land (x_3 \lor x_4) \land (x_3 \lor x_4) \land (x_1 \lor x_3)$
• First, we pick x_1, and set it to true
• And x_2 must be both true and false. Back up
• And set x_1 to be false
• And x_3 must be true ...

17-56: Algorithm to solve 2-SAT

• Example:

 \[(\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (\neg x_3 \lor x_4) \land (\neg x_3 \lor \neg x_4) \land (x_1 \lor x_3) \]

• First, we pick x_1, and set it to true
• And x_2 must be both true and false. Back up
• And set x_1 to be false
• And x_3 must be true
• And x_4 must be both true and false. No solution

17-57: Algorithm to solve 2-SAT

• Once we’ve decided to set a variable to true or false, the “marking off” phase takes a polynomial number of steps
• Each variable will be chosen to be set to true no more than once, and chosen to be set to false no more than once more than once
• Total running time is polynomial

17-58: 3-SAT

• 3-SAT is a special case of the satisfiability problem, where each clause has no more than 3 variables.
• 3-SAT has no known polynomial solution
 • Can’t really do any better than trying all possible truth assignments to all variables, and see if they work.