Automata Theory
CS411-2015S-18

Complexity Theory Il: Class NP

BEW |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

1s-0: Language Class P

® A language L is polynomially decidable if there
exists a polynomially bound deterministic Turing
machine that decides it.

® A Turing Machine M is polynomially bound if:
e There exists some polynomial function p(n)
e For any input string w, M always halts within
p(jwl) steps

® The set of languages that are polynomially
decidable is P

18-1: Language Class NP

® A language L is non-deterministically polynomially
decidable if there exists a polynomially bound
non-deterministic Turing machine that decides it.

® A Non-Deterministic Turing Machine M is
polynomially bound if:

e There exists some polynomial function p(n)
e For any input string w, M always halts within
p(|lw]|) steps, for all computational paths

® The set of languages that are non-deterministically
polynomially decidable is NP

18-2: Language Class NP

® |falLanguage L isin NP:

* There exists a non-deterministic Turing
machine M

e M halts within p(|w|) steps for all inputs w, in
all computational paths

e |f w € L, then there is at least one
computational path for w that accepts (and
potentially several that reject)

e Ifw & L, then all computational paths for w
reject

183: NP vs P

® A problem is in P if we can generate a solution
quickly (that is, in polynomial time

® A problemisin NP if we can checkto see if a
potential solution is correct quickly

* Non-deterministically create (guess) a potential
solution

e Check to see that the solution is correct

18-: NP vs P

® All problems in P are also in NP
e Thatis, P C NP

* |f you can generate correct solutions, you can
check if a guessed solution is correct

18-5: NP Problems

® Finding Hamiltonian Cycles is NP

* Non-deterministically pick a permutation of the

nodes of the graph
- First, non-deterministically pick any node in

the graph, and place it first in the permutation

- Then, non-deterministically pick any
unchosen node in the graph, and place it
second in the permutation

e Check to see if that permutation forms a valid
cycle

18-6: NP Problems

® Traveling Salesman decision problem is NP

* Non-deterministically pick a permutation of the

nodes of the graph
- First, non-deterministically pick any node in

the graph, and place it first in the permutation

- Then, non-deterministically pick any
unchosen node in the graph, and place it
second in the permutation

* Check to see if the cost of that cycle is within
the cost bound.

18.7: Integer Partition

® |nteger Partition is NP
* Non-deterministically pick a subset P C S
* Check to see if:

2.P= 2%

peP seS—P

18-8: NP Problems

® Satisfiability is NP
e Count the number of variables in the formula

* Non-deterministically write down True or False
for each of the n variables in the formula

e Check to see if that truth assignment satisfies
the formula

18-9: Reduction Redux

® Given a problem instance P, if we can

e Create an instance of a different problem F’, in
polynomial time, such that the solution to P’ is
the same as the solution to P

e Solve the instance P’ in polynomial time
® Then we can solve P in polynomial time

18-10: Reduction Example

® |f we could solve the Traveling Salesman decision
problem in polynomial time, we could solve the
Hamiltonian Cycle problem in polynomial time
e Given any graph G, we can create a new graph
G' and limit k£, such that there is a Hamiltonian
Circuit in GG if and only if there is a Traveling
Salesman tour in G' with cost less than &
e Vertices in G’ are the same as the vertices in G

* For each pair of vertices x; and z; in G, if the
edge (z;, x;) is in G, add the edge (z;,z;) to G
with the cost 1. Otherwise, add the edge
(x;, ;) to G’ with the cost 2.

e Set the limit £ = # of vertices in &G

18-11: Reduction Example

® O ® 2 ®
® O O

18-12: Reduction Example

® |f we could solve TSP in polynomial time, we could
solve Hamiltonian Cycle problem in polynomial
time
e Start with an instance of Hamiltonian Cycle
e Create instance of TSP
* Feed instance of TSP into TSP solver

e Use result to find solution to Hamiltonian Cycle

18-13: Reduction Example #2

® Given any instance of the Hamiltonian Cycle
Problem:

 We can (in polynomial time) create an instance
of Satisfiability

 That is, given any graph G, we can create a
boolean formula f, such that f is satisfiable if
and only if there is a Hamiltonian Cycle in G

® |f we could solve Satisfiability in Polynomial Time,
we could solve the Hamiltonian Cycle problem in
Polynomial Time

18-14: Reduction Example #2

® Given a graph GG with n vertices, we will create a
formula with n* variables:

® T11,%12, 13y ... T1p
X211, L22y L23, ... Loy
:Enlv :En27 ajn?n .« oo Lnpn

® Design our formula such that z;; will be true if and

only if the ith element in a Hamiltonian Circuit of G
IS vertex # 9

18-15: Reduction Example #2

® For our set of n* variables x;;, we need to write a
formula that ensures that:

* For each ¢, there is exactly one j such that z;; =
true

* For each j, there is exactly one ¢ such that x;; =
true

* If z;; and x(;+1), are both true, then there must
be a link from v; to vy in the graph G

18-16: Reduction Example #2

® For each i, there is exactly one j such that x;; =
frue

e Foreachzin1...n, add the rules:
° (337/1\/33@2\/\/332”)

® This ensures that for each i, there is at least one
such that x;, = true

® (This adds n clauses to the formula)

18-17: Reduction Example #2

® For each i, there is exactly one j such that x;; =
frue

foreachzinl...n
foreachjinl...n
foreachkinl...n j#k
Add rule (z;; V Ty)

® This ensures that for each i, there is at most one)
such that x;; = true

® (this adds a total of n° clauses to the formula)

18-18: Reduction Example #2

® For each j, there is exactly one ¢ such that x;; =
frue

e Foreach jin1...n, add the rules:
o (lej\/ﬂfgj\/...\/ﬂfnj)

® This ensures that for each 7, there is at least one ¢
such that x;; = true

® (This adds n clauses to the formula)

18-19: Reduction Example #2

® For each j, there is exactly one ¢ such that x;; =
frue

foreachjinl...n
foreachiinl...n
foreach kinl...n
Add rule (7;; V Ty;)

® This ensures that for each 7, there is at most one 2
such that x;; = true

® (This adds a total of n’ clauses to the formula)

18-20: Reduction Example #2

® If x;; and x(;+1), are both true, then there must be a
link from v, to v;, in the graph G

foreach¢inl...(n—1)
foreachjinl...n
foreachkinl...n
if edge (v;, v.) is notin the graph:
Add rule (.CIZ_Z] \% x(i+1)k)

® (This adds no more than »* clauses to the formula)

18-21: Reduction Example #2

® |f z,, and z(are both true, then there must be a
link from v; to vy, in the graph G (looping back to
finish cycle)

foreachjinl...n
foreachkinl...n
if edge (v;, vy.) is notin the graph:
Add rule (Zlfnj \% Zlf()k)

® (This adds no more than n* clauses to the formula)

18-22: Reduction Example #2

® |n order for this formula to be satisfied:

* For each ¢, there is exactly one j such that x;;
IS true

* For each j, there is exactly one ¢ such that z;;
IS true

* if z;; is true, and x ;.1 IS true, then there is an
arc from v, to v, in the graph GG

® Thus, the formula can only be satisfied if there is a
Hamiltonian Cycle of the graph

18-23: NP-Complete

® A language L is NP-Complete if:
e Lisin NP
e /[fwe could decide L in polynomial time, then all
NP languages could be decided in polynomial
time
* That is, we could reduce any NP problem to L
iIn polynomial time

18-24: NP-Complete

® How do you show a problem is NP-Complete?

e Given any polynomially-bound
non-deterministic Turing machine M and string
w:

- Create an instance of the problem that has a
solution if and only if M accepts w

18-25: NP-Complete

®* First NP-Complete Problem: Satisfiability (SAT)

e Given any (possibly non-deterministic) Turing
Machine M, string w, and polynomial bound
p(n)

- Create a boolean formula f, such that f is
satisfiable if and only of M accepts w

18-26: COOk’s Theorem

® Satisfiability is NP-Complete
e Given a Turing Machine M, string w,
polynomial bound p(n), we will create:

- A set of variables
- A set of clauses containing these variables

e Such that the conjunction (A) of the clauses is
satisfiable if and only if M accepts w within

p(|w|) steps

® WARNING: This explaination is somewhat
simplifed. Some subtleties have been eliminated
for clarity.

18-27: Cook’s Theorem

® Variables
* Q|t, k] at time ¢, machine is in state ¢

e H|i,j| at time ¢, the machine is scanning tape
square j

e S|i, 7, k] at time 4, the contents of tape location
7 Is the symbol &

® How many of each of these variables are there?

18-28: Co0Ok’s Theorem

® \ariables
* Qi k] K| * p(|w])
* Hli,j| p(Jw|) * p(Jw])
* S[i, j, k] p(|w|) * p(Jw|) = [X]

® How many of each of these variables are there?

18-20: COoOk’s Theorem

At each time 2, M is in exactly one state

At each time ¢, the read-write head is scanning one
tape square

At each time 7, each tape square contains exactly
one symbol

At time 0, the computation is in the initial
configuration for input w

By time p(|w|), M has entered the final state and
has hence accepted w

For each time ¢, the configuration of the M at: + 1
follows by a single application of o

18-30: Cook’s Theorem

(GG, At each time ¢, M is in exactly one state

(QLE, 01V Q1] V... vQLi, |KI)

for each 0 < i < p(|w|)

(QLi, 5] v Qi 5'])

foreach 0 < i < p(|w|),0 < j < j < |K]|

18-31: Cook’s Theorem

(5 At each time 7, the read-write head is scanning one
tape square

(H3, 0]V Hz, 1] V..oV H i, p|w])])

for each 0 < i < p(|w|)

(Hli,j] v Hli, j'])

foreach 0 < i < p(|w|),0 <7 <7 < p(lw|)

18-32: Cook’s Theorem

(G5 At each time 7, each tape square contains exactly
one symbol

(Sli, 7,0] v Sli, 5,1] V...V S]i, g, |2]])

foreach 0 < i < p(|w|),0 < 7 < p(|w))

(512, 5, k] V S, 5, k)

for each
0 <i < p(lw]),0<j<p(lw]),0 <k <k <I[Y|

18-33: CoOk’s Theorem

G4 Attime 0, the computation is in the initial
configuration for input w

@10, 0]

H10, 1]
510, 0, 0]
S:O,l,wl]
S:O,Q,wg]
SO, w ,w|w|]
S10, |w| + 1, 0]
S0, |lw| 4+ 2, 0]
510, p(lwl), 0]

18-32: Cook’s Theorem

G5 By time p(|w|), M has entered the final state and
has hence accepted w

Q[p(|wl), 7]

Where ¢, is the accept state

18-35: COOk’s Theorem

G¢ For each time ¢, the configuration of the M at: + 1
follows by a single application of o

For each deterministic transtion ((qx,), (¢, —))
Foralll 0 < i < p(|w]),0 < j < p(|w])
Add:
Qli, k| A Hli, j) A Sli, j,a] = H
Qli, k| A Hli, j] A S[i, j,a] = Q]i

18-36: COOk’s Theorem

G¢ For each time ¢, the configuration of the M at: + 1
follows by a single application of o

For each deterministic transtion ((qx, 3.), (¢, <))
Foralll 0 < i < p(|w]),0 < j < p(|w])
Add:
Qli, k| A Hli, j) A Sli, j,a] = H
Qli, k| A Hli, j] A S[i, j,a] = Q]i

18-37: Cook’s Theorem

G¢ For each time ¢, the configuration of the M at: + 1
follows by a single application of o

For each deterministic transtion ((qx, >.), (g1, %))
Foralll 0 < i < p(Jw|),0 <7 < p(lw|

Add:

)

Qli, k) N Hli,j] A Sli, j,a] = H|i + 1, j]
Qlt, k| N Hli, 7| NSt j,a] = Qi + 1,1
Qli, k) N Hi, j| A Si, j,a] = S|z, 7, b]

18-38: CoOk’s Theorem

ich time ¢, the configuration of the M at ¢ + 1
5 by a single application of o

lon-deterministic transtion ((qx, X.), (¢, —)) and ((qx, >4), (¢
,0 <i<p(Jw]),0 <5 < p(jwl)

Qli, K] A H[i,j] A Si, ja] = H[i+1,j+1
Qli, k| N Hi, 3] A S[i, j,a] = Qe + 1,1 V

18-30: CoOk’s Theorem

G¢ For each time ¢, the configuration of the M at: + 1
follows by a single application of 0

® . similar rules for other non-deterministic cases

18-40: COoOk’s Theorem

G¢ For each time ¢, the configuration of the M at: + 1
follows by a single application of o

Hli,j) N Sli,k,a] = Sli + 1, k, a

for all values of k, j between 0 and p(|w|) where k # 7,
and all values 0 < a < |X|

18-41: More NP-Complete Problems

® S0, if we could solve Satisfiability in Polynomial
Time, we could solve any NP problem in
polynomial time

* Including factoring large numbers ...
® Satisfiability is NP-Complete
® There are many NP-Complete problems
* Prove NP-Completeness using a reduction

18-42: More NP-Complete Problems

® Exact Cover Problem
e Set of elements A
e ' C 24, family of subsets

e |s there a subset of F' such that each element
of A appears exactly once?

18-43: More NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

e I'={{a,b,c},{d,e, f},{b, f,9},{g}}

e Exact cover exists:

{a7 b7 C}7 {d7 67 f}7 {g}

18-44: More NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

* F'={{a,bc},{c.d e f}{a, f g} {c}}

e No exact cover exists

18-45: More NP-Complete Problems

® Exact Coverisin NP
 (Guess a cover
* Check that each element appears exactly once

® Exact Cover is NP-Complete
* Reduction from Satisfiability

e Given any instance of Satisfiability, create (in
polynomial time) an instance of Exact Cover

18-46: Exact Cover is NP-Complete

® Given an instance of SAT:

* C) = (x1,VTy)

e Uy = (T Va3V x3)
e (5= (x)

* Cy = (72, 73)

® Formula: Cl A\ OQ N\ 03 N\ 04

® Create an instance of Exact Cover

e Define a set A and family of subsets F' such
that there is an exact cover of A in F'if and only
If the formula is satisfiable

18-47: Exact Cover is NP-Complete

01 — (331 \/SC_Q) 02: (56_1\/332\/1’3) 03: (CL’Q) 04: (SIZ‘Q\/SIZ‘g)

A = {x1,29,73,C1, Cy, Cs,Cy, p11, P12, D21, P22, P23, D31, Pa1, Pa2 }
F = {{1011}7{]?12},{p21},{p22},{p23},{p31},{p41},{p42},
Xy, f =A{%1,pui}

Xi,t ={x1,pa1}

Xo, f = {$2,p22,p31}

Xo,t = {22, P12, Pa1 }

X3, | = {$37p23}

X3, t = {23, pa2}

{0171?11}, {0171912}7 {0271921}7 {C2ap22}7 {0271923}7 {0371931}7
{04,]741}, {04,]7422}}

18-48: Knapsack

® Given a set of integers S and a limit £:
e |s there some subset of S that sums to £?

e (3,5, 11, 15, 20, 25} Limit: 36
e {5, 11, 20}

e {2,5,10, 12, 20, 27} Limit: 43
e No solution

® (Generalized version of Integer Partition problem

18-49: Knapsack

® Knapsack is NP-Complete

® By reduction from Exact Cover

e Given any Exact Cover problem (set A, family
of subsets F'), we will create a Knapsack
problem (set S, limit k), such that there is a
subset of S that sums to k if and only if there is
an exact cover of A in F

18-50: Knapsack

® Each set will be represented by a number —
bit-vector representation of the set
A= {afla s, as, a’4}

Set Number

Fy =Aa,as,a3} 1110

Fy, =A{ay, a4} 0101

Fy ={ay,as} 1010

F, ={ay,as,as} 0111
There Is an exact cover If some subset of the
numbers sum to ...

18-51: Knapsack

® Each set will be represented by a number —
bit-vector representation of the set
A= {afla s, as, a’4}

Set Number
Fy =Aa,as,a3} 1110
Fy, =A{ay, a4} 0101
Fy ={ay,as} 1010
F, ={ay,as,as} 0111

There I1s an exact cover if some subset of the
numbers sum to 1111

18-52. Knapsack

® Bug in our reduction:
A= {alv a2, As, CL4}

Set Number
F\ ={ay,as,as} 0111
Fy, =Aay, a4} 0101
Py = {as) 0010
Fy = {a,) 0001
F, ={a,as,as} 1011

® 0111 + 0101 + 0001 + 0010 =1111
® \What can we do?

18-53: Knapsack

® Construct the numbers just as before

® Do addition in base m, where m is the number of
elementin A. A = {a,,a,,a3,a,}

Set Number
Fy ={ay,a3,a,} 0111
Fy, =A{ay, a4} 0101
Fy = {as) 0010
F; = {a,} 0001
F, =Aay,as,as} 1011

® 0111 + 0101 + 0001 + 0010 = 0223
® No subset of numbers sumsto 1111

18-54: Integer Partition

® |nteger Partition
e Special Case of the Knapsack problem

e “Half sum” H (sum of all elements in the set/ 2)
IS an integer

e Limitk=H
® |nteger Partition is NP-Complete
 Reduce Knapsack to Integer Partition

18-55: Integer Partition

® (GGiven any instance of the Knapsack problem
e Set of integers S = {a,,as,...,a,} limitk
* |s there a subset of S that sums to £7

® Create an instance of Integer Partition

e Set of integers S = {ay,a9,...,a,,}
e Can we divde S into two subsets that have the
same sum?

e Equivalently, is there a subset if S that sums to

H = (32 a:)/2

18-56: Integer Partition

® (GGiven any instance of the Knapsack problem
e Set of integers S = {a,,as,...,a,} limitk
® We create the following instance of Integer
Partition:

e S"=SUA{2H + 2k,4H} (H is the half sum of
S)

18-57: Integer Partition

® S'"=SU{2H + 2k,4H} (H is the half sum of S5)

e If there is a partion for S', 2H + 2k and 4H
must be in separate partitions (why)?

A0+ a;=2H +2k+) aq

a; €P CLjES—P

18-58: Integer Partition

4H+Zai:2H—|—2k+ Z a;

a; €P CLjES—P

® Adding } ., .pa; to both sides:

1H+2) a; = 2H+2k+) aq
a; P ajES
4H+22ai — 4H + 2k
a;€P

Zai:k

a;eP

18-59: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

N
AN

O

<

18-60: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

N4
N\

O

<

18-61: Directed Hamiltonian Cycle

® The Directed Hamiltonian Cycle problem is
NP-Complete
® Reduce Exact Cover to Directed Hamiltonian Cycle
e Given any set A, and family of subsets F':

e Create a graph G that has a hamiltonian cycle if
and only if there is an exact cover of A in F’

18-62: Directed Hamiltonian Cycle

® Widgets:
e Consider the following graph segment:
a b

N v
SN

* |f a graph containing this subgraph has a
Hamiltonian cycle, then the cycle must contain
eithera - u —v — w — bor
c — w — v — u — d—but not both (why)?

d

18-63: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle
a b

18-64: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle

18-65: Directed Hamiltonian Cycle

® Add a vertex for every variable in A (+ 1 extra)

A © F={a.&}
Fo= {&}
F3= {& . &}

a, O

a, O

18-66: Directed Hamiltonian Cycle

® Add a vertex for every subset F' (+ 1 extra)

a; O O Fy

F.={a . &}
Fo= {a&}
Fs= {a& ., &}
a, O o ki
a, O o F

18-67: Directed Hamiltonian Cycle

® Add an edge from the last variable to the Oth
subset, and from the last subset to the 0th variable

a3 @ » O FO F1: {al,%}
Fo= {a&}
Fs= {&,&}

a, O o Fk

a, O o P

a, O- o F3

18-68: Directed Hamiltonian Cycle

® Add 2 edges from F; to F; ;. One edge will be a
“short edge”, and one will be a “long edge”.

a; O » O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
a, O <o> Fy
a, O o P
<> =

a, O O

18-69: Directed Hamiltonian Cycle

® Add an edge from a,_; to a; for each subset q;
appears in.

a; O > O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
ay o ki
< F,

O

;

a, O O

aq

18-70: Directed Hamiltonian Cycle

® Each edge (a;_1, a;) corresponds to some subset
that contains a,. Add an XOR link between this
edge and the long edge of the corresponding
subset

18-71: Directed Hamiltonian Cycle

18-72: Directed Hamiltonian Cycle

a, O »O. Fy = {a,3}
4—O—> _
Fo={&,a}
Fs= {a ., &}
az O S o, F F,= {&}
S > S
A , O> R XOR edge
\ A
a, S = o F3
ao) F

	{small lecturenumber -	heblocknumber :} Language Class ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Class ${�f NP}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Class ${�f NP}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ vs ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ vs ${�f P}$addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$ Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Reduxaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ${�f NP}$-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Cook's Theoremaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Knapsackaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Integer Partitionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}

