18-0: **Language Class P**

- A language \(L \) is polynomially decidable if there exists a polynomially bound deterministic Turing machine that decides it.

- A Turing Machine \(M \) is polynomially bound if:
 - There exists some polynomial function \(p(n) \)
 - For any input string \(w \), \(M \) always halts within \(p(|w|) \) steps

- The set of languages that are polynomially decidable is \(P \)

18-1: **Language Class NP**

- A language \(L \) is non-deterministically polynomially decidable if there exists a polynomially bound non-deterministic Turing machine that decides it.

- A Non-Deterministic Turing Machine \(M \) is polynomially bound if:
 - There exists some polynomial function \(p(n) \)
 - For any input string \(w \), \(M \) always halts within \(p(|w|) \) steps, for all computational paths

- The set of languages that are non-deterministically polynomially decidable is \(\text{NP} \)

18-2: **Language Class NP**

- If a Language \(L \) is in \(\text{NP} \):
 - There exists a non-deterministic Turing machine \(M \)
 - \(M \) halts within \(p(|w|) \) steps for all inputs \(w \), in all computational paths
 - If \(w \in L \), then there is at least one computational path for \(w \) that accepts (and potentially several that reject)
 - If \(w \notin L \), then all computational paths for \(w \) reject

18-3: **NP vs P**

- A problem is in \(P \) if we can generate a solution quickly (that is, in polynomial time)

- A problem is in \(\text{NP} \) if we can check to see if a potential solution is correct quickly
 - Non-deterministically create (guess) a potential solution
 - Check to see that the solution is correct

18-4: **NP vs P**

- All problems in \(P \) are also in \(\text{NP} \)
 - That is, \(P \subseteq \text{NP} \)
 - If you can generate correct solutions, you can check if a guessed solution is correct

18-5: **NP Problems**

- Finding Hamiltonian Cycles is \(\text{NP} \)
 - Non-deterministically pick a permutation of the nodes of the graph
• First, non-deterministically pick any node in the graph, and place it first in the permutation
• Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
• ...
• Check to see if that permutation forms a valid cycle

18-6: NP Problems

• Traveling Salesman decision problem is NP
 • Non-deterministically pick a permutation of the nodes of the graph
 • First, non-deterministically pick any node in the graph, and place it first in the permutation
 • Then, non-deterministically pick any unchosen node in the graph, and place it second in the permutation
 • ...
 • Check to see if the cost of that cycle is within the cost bound.

18-7: Integer Partition

• Integer Partition is NP
 • Non-deterministically pick a subset $P \subset S$
 • Check to see if:
 $$\sum_{p \in P} p = \sum_{s \in S - P} s$$

18-8: NP Problems

• Satisfiability is NP
 • Count the number of variables in the formula
 • Non-deterministically write down True or False for each of the n variables in the formula
 • Check to see if that truth assignment satisfies the formula

18-9: Reduction Redux

• Given a problem instance P, if we can
 • Create an instance of a different problem P', in polynomial time, such that the solution to P' is the same as the solution to P
 • Solve the instance P' in polynomial time
 • Then we can solve P in polynomial time

18-10: Reduction Example

• If we could solve the Traveling Salesman decision problem in polynomial time, we could solve the Hamiltonian Cycle problem in polynomial time
 • Given any graph G, we can create a new graph G' and limit k, such that there is a Hamiltonian Circuit in G if and only if there is a Traveling Salesman tour in G' with cost less than k
 • Vertices in G' are the same as the vertices in G
• For each pair of vertices x_i and x_j in G, if the edge (x_i, x_j) is in G, add the edge (x_i, x_j) to G' with the cost 1. Otherwise, add the edge (x_i, x_j) to G' with the cost 2.

• Set the limit $k = \#$ of vertices in G

18-11: Reduction Example

![Graph with edges and costs]

Limit = 4

18-12: Reduction Example

• If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time
 • Start with an instance of Hamiltonian Cycle
 • Create instance of TSP
 • Feed instance of TSP into TSP solver
 • Use result to find solution to Hamiltonian Cycle

18-13: Reduction Example #2

• Given any instance of the Hamiltonian Cycle Problem:
 • We can (in polynomial time) create an instance of Satisfiability
 • That is, given any graph G, we can create a boolean formula f, such that f is satisfiable if and only if there is a Hamiltonian Cycle in G
 • If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polynomial Time

18-14: Reduction Example #2

• Given a graph G with n vertices, we will create a formula with n^2 variables:
 - $x_{11}, x_{12}, x_{13}, \ldots, x_{1n}$
 - $x_{21}, x_{22}, x_{23}, \ldots, x_{2n}$
 - \ldots
 - $x_{n1}, x_{n2}, x_{n3}, \ldots, x_{nn}$

• Design our formula such that x_{ij} will be true if and only if the ith element in a Hamiltonian Circuit of G is vertex # j

18-15: Reduction Example #2

• For our set of n^2 variables x_{ij}, we need to write a formula that ensures that:
 • For each i, there is exactly one j such that $x_{ij} = true$
• For each j, there is exactly one i such that $x_{ij} = true$

• If x_{ij} and $x_{(i+1)k}$ are both true, then there must be a link from v_j to v_k in the graph G

18-16: **Reduction Example #2**

• For each i, there is exactly one j such that $x_{ij} = true$

 • For each i in $1 \ldots n$, add the rules:
 • $(x_{i1} \lor x_{i2} \lor \ldots \lor x_{in})$

 • This ensures that for each i, there is at least one j such that $x_{ij} = true$

 • (This adds n clauses to the formula)

18-17: **Reduction Example #2**

• For each i, there is exactly one j such that $x_{ij} = true$

 for each i in $1 \ldots n$

 for each j in $1 \ldots n$

 for each k in $1 \ldots n$

 $j \neq k$

 Add rule $(x_{ij} \lor x_{ik})$

• This ensures that for each i, there is at most one j such that $x_{ij} = true$

• (This adds a total of n^3 clauses to the formula)

18-18: **Reduction Example #2**

• For each j, there is exactly one i such that $x_{ij} = true$

 • For each j in $1 \ldots n$, add the rules:
 • $(x_{1j} \lor x_{2j} \lor \ldots \lor x_{nj})$

 • This ensures that for each j, there is at least one i such that $x_{ij} = true$

 • (This adds n clauses to the formula)

18-19: **Reduction Example #2**

• For each j, there is exactly one i such that $x_{ij} = true$

 for each j in $1 \ldots n$

 for each i in $1 \ldots n$

 for each k in $1 \ldots n$

 Add rule $(\overline{x_{ij}} \lor \overline{x_{kj}})$

• This ensures that for each j, there is at most one i such that $x_{ij} = true$

• (This adds a total of n^3 clauses to the formula)

18-20: **Reduction Example #2**
• If \(x_{ij} \) and \(x_{(i+1)k} \) are both true, then there must be a link from \(v_i \) to \(v_k \) in the graph \(G \)

 for each \(i \) in \(1 \ldots (n - 1) \)
 for each \(j \) in \(1 \ldots n \)
 for each \(k \) in \(1 \ldots n \)
 if edge \((v_j, v_k)\) is not in the graph:
 Add rule \(x_{ij} \lor x_{(i+1)k} \)

• (This adds no more than \(n^3 \) clauses to the formula)

18-21: Reduction Example #2

• If \(x_{nj} \) and \(x_{0k} \) are both true, then there must be a link from \(v_j \) to \(v_k \) in the graph \(G \) (looping back to finish cycle)

 for each \(j \) in \(1 \ldots n \)
 for each \(k \) in \(1 \ldots n \)
 if edge \((v_j, v_k)\) is not in the graph:
 Add rule \(x_{nj} \lor x_{0k} \)

• (This adds no more than \(n^2 \) clauses to the formula)

18-22: Reduction Example #2

• In order for this formula to be satisfied:
 - For each \(i \), there is exactly one \(j \) such that \(x_{ij} \) is true
 - For each \(j \), there is exactly one \(i \) such that \(x_{ji} \) is true
 - if \(x_{ij} \) is true, and \(x_{(i+1)k} \) is true, then there is an arc from \(v_j \) to \(v_k \) in the graph \(G \)

• Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

18-23: NP-Complete

• A language \(L \) is NP-Complete if:
 - \(L \) is in NP
 - If we could decide \(L \) in polynomial time, then all NP languages could be decided in polynomial time
 - That is, we could reduce any NP problem to \(L \) in polynomial time

18-24: NP-Complete

• How do you show a problem is NP-Complete?
 - Given any polynomially-bound non-deterministic Turing machine \(M \) and string \(w \):
 - Create an instance of the problem that has a solution if and only if \(M \) accepts \(w \)

18-25: NP-Complete

• First NP-Complete Problem: Satisfiability (SAT)
 - Given any (possibly non-deterministic) Turing Machine \(M \), string \(w \), and polynomial bound \(p(n) \)
• Create a boolean formula f, such that f is satisfiable if and only of M accepts w

18-26: **Cook’s Theorem**

• Satisfiability is NP-Complete
 • Given a Turing Machine M, string w, polynomial bound $p(n)$, we will create:
 • A set of variables
 • A set of clauses containing these variables
 • Such that the conjunction (\land) of the clauses is satisfiable if and only if M accepts w within $p(|w|)$ steps
 • WARNING: This explanation is somewhat simplified. Some subtleties have been eliminated for clarity.

18-27: **Cook’s Theorem**

• Variables
 • $Q[i, k]$ at time i, machine is in state q_k
 • $H[i, j]$ at time i, the machine is scanning tape square j
 • $S[i, j, k]$ at time i, the contents of tape location j is the symbol k
 • How many of each of these variables are there?

18-28: **Cook’s Theorem**

• Variables
 • $Q[i, k]$ $|K| \cdot p(|w|)$
 • $H[i, j]$ $p(|w|) \cdot p(|w|)$
 • $S[i, j, k]$ $p(|w|) \cdot p(|w|) \cdot |\Sigma|$
 • How many of each of these variables are there?

18-29: **Cook’s Theorem**

G_1 At each time i, M is in exactly one state

G_2 At each time i, the read-write head is scanning one tape square

G_3 At each time i, each tape square contains exactly one symbol

G_4 At time 0, the computation is in the initial configuration for input w

G_5 By time $p(|w|)$, M has entered the final state and has hence accepted w

G_6 For each time i, the configuration of the M at $i + 1$ follows by a single application of δ

18-30: **Cook’s Theorem**

G_1 At each time i, M is in exactly one state
\((Q[i, 0] \lor Q[i, 1] \lor \ldots \lor Q[i, |K|])\)

for each \(0 \leq i \leq p(|w|)\)

\((Q[i, j] \lor Q[i, j'])\)

for each \(0 \leq i \leq p(|w|), 0 \leq j < j' \leq |K|\)

18-31: **Cook’s Theorem**

G_2 At each time \(i\), the read-write head is scanning one tape square

\((H[i, 0] \lor H[i, 1] \lor \ldots \lor H[i, p(|w|)])\)

for each \(0 \leq i \leq p(|w|)\)

\((H[i, j] \lor H[i, j'])\)

for each \(0 \leq i \leq p(|w|), 0 \leq j < j' \leq p(|w|)\)

18-32: **Cook’s Theorem**

G_3 At each time \(i\), each tape square contains exactly one symbol

\((S[i, j, 0] \lor S[i, j, 1] \lor \ldots \lor S[i, j, |\Sigma|])\)

for each \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|)\)

\((S[i, j, k] \lor S[i, j, k'])\)

for each \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|), 0 \leq k < k' \leq |\Sigma|\)

18-33: **Cook’s Theorem**

G_4 At time 0, the computation is in the initial configuration for input \(w\)

\(Q[0, 0]\)

\(H[0, 1]\)

\(S[0, 0, 0]\)

\(S[0, 1, w_1]\)

\(S[0, 2, w_2]\)

\(\ldots\)

\(S[0, |w|, w_{|w|}]\)

\(S[0, |w| + 1, 0]\)

\(S[0, |w| + 2, 0]\)

\(\ldots\)

\(S[0, p(|w|), 0]\)

18-34: **Cook’s Theorem**

G_5 By time \(p(|w|)\), \(M\) has entered the final state and has hence accepted \(w\)
Where \(q_r \) is the accept state

18-35: **Cook’s Theorem**

\(G_6 \) For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \)

For each deterministic transition \(((q_k, \Sigma_a), (q_l, \rightarrow)) \)

For all \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|) \)

Add:
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j + 1]
\]
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l]
\]

18-36: **Cook’s Theorem**

\(G_6 \) For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \)

For each deterministic transition \(((q_k, \Sigma_a), (q_l, \leftarrow)) \)

For all \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|) \)

Add:
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j - 1]
\]
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l]
\]

18-37: **Cook’s Theorem**

\(G_6 \) For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \)

For each deterministic transition \(((q_k, \Sigma_a), (q_l, \Sigma_b)) \)

For all \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|) \)

Add:
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j]
\]
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l]
\]
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow S[i, j, b]
\]

18-38: **Cook’s Theorem**

\(G_6 \) For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \)

For each non-deterministic transition \(((q_k, \Sigma_a), (q_l, \rightarrow)) \) and \(((q_k, \Sigma_a), (q_m, \rightarrow)) \)

For all \(0 \leq i \leq p(|w|), 0 \leq j \leq p(|w|) \)

Add:
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow H[i + 1, j + 1]
\]
\[
Q[i, k] \land H[i, j] \land S[i, j, a] \Rightarrow Q[i + 1, l] \lor Q[i + 1, m]
\]

18-39: **Cook’s Theorem**

\(G_6 \) For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \)

- ... similar rules for other non-deterministic cases
Cook’s Theorem

For each time \(i \), the configuration of the \(M \) at \(i + 1 \) follows by a single application of \(\delta \):

\[
H[i, j] \land S[i, k, a] \Rightarrow S[i + 1, k, a]
\]

for all values of \(k, j \) between 0 and \(p(|w|) \) where \(k \neq j \), and all values \(0 \leq a < |\Sigma| \)

More NP-Complete Problems

So, if we could solve Satisfiability in Polynomial Time, we could solve any \(\text{NP} \) problem in polynomial time

- Including factoring large numbers ...
- Satisfiability is \(\text{NP} \)-Complete
- There are many \(\text{NP} \)-Complete problems
 - Prove \(\text{NP} \)-Completeness using a reduction

More NP-Complete Problems

- Exact Cover Problem
 - Set of elements \(A \)
 - \(F \subset 2^A \), family of subsets
 - Is there a subset of \(F \) such that each element of \(A \) appears exactly once?

More NP-Complete Problems

- Exact Cover Problem
 - \(A = \{a, b, c, d, e, f, g\} \)
 - \(F = \{\{a, b, c\}, \{d, e, f\}, \{b, f, g\}, \{g\}\} \)
 - Exact cover exists:
 \[\{a, b, c\}, \{d, e, f\}, \{g\}\]

More NP-Complete Problems

- Exact Cover Problem
 - \(A = \{a, b, c, d, e, f, g\} \)
 - \(F = \{\{a, b, c\}, \{c, d, e, f\}, \{a, f, g\}, \{c\}\} \)
 - No exact cover exists

More NP-Complete Problems

- Exact Cover is in \(\text{NP} \)
 - Guess a cover
 - Check that each element appears exactly once
- Exact Cover is \(\text{NP} \)-Complete
• Reduction from Satisfiability
• Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

18-46: Exact Cover is NP-Complete

• Given an instance of SAT:
 • \(C_1 = (x_1, \overline{x_2}) \)
 • \(C_2 = (\overline{x_1} \lor x_2 \lor x_3) \)
 • \(C_3 = (x_2) \)
 • \(C_4 = (\overline{x_2}, \overline{x_3}) \)
• Formula: \(C_1 \land C_2 \land C_3 \land C_4 \)
• Create an instance of Exact Cover
 • Define a set \(A \) and family of subsets \(F \) such that there is an exact cover of \(A \) in \(F \) if and only if the formula is satisfiable

18-47: Exact Cover is NP-Complete

\[
C_1 = (x_1 \lor \overline{x_2}) \quad C_2 = (\overline{x_1} \lor x_2 \lor x_3) \quad C_3 = (x_2) \quad C_4 = (\overline{x_2}, \overline{x_3})
\]
\[
A = \{x_1, x_2, x_3, C_1, C_2, C_3, C_4, p_{11}, p_{12}, p_{21}, p_{22}, p_{23}, p_{31}, p_{41}, p_{42}\}
\]
\[
F = \{\{p_{11}\}, \{p_{12}\}, \{p_{21}\}, \{p_{22}\}, \{p_{23}\}, \{p_{31}\}, \{p_{41}\}, \{p_{42}\}\},
\]
\[
X_1, f = \{x_1, p_{11}\}
\]
\[
X_1, t = \{x_1, p_{21}\}
\]
\[
X_2, f = \{x_2, p_{22}, p_{31}\}
\]
\[
X_2, t = \{x_2, p_{12}, p_{41}\}
\]
\[
X_3, f = \{x_3, p_{23}\}
\]
\[
X_3, t = \{x_3, p_{42}\}
\]
\[
\{C_1, p_{11}\}, \{C_1, p_{12}\}, \{C_2, p_{21}\}, \{C_2, p_{22}\}, \{C_2, p_{23}\}, \{C_3, p_{31}\}, \{C_4, p_{41}\}, \{C_4, p_{42}\}\} \quad 18-48: Knapsack
\]
• Given a set of integers \(S \) and a limit \(k \):
 • Is there some subset of \(S \) that sums to \(k \)?
• \{3, 5, 11, 15, 20, 25\} Limit: 36
 • \{5, 11, 20\}
• \{2, 5, 10, 12, 20, 27\} Limit: 43
 • No solution
• Generalized version of Integer Partition problem

18-49: Knapsack

• Knapsack is NP-Complete
• By reduction from Exact Cover
 • Given any Exact Cover problem (set \(A \), family of subsets \(F \)), we will create a Knapsack problem (set \(S \), limit \(k \)), such that there is a subset of \(S \) that sums to \(k \) if and only if there is an exact cover of \(A \) in \(F \)
• Each set will be represented by a number – bit-vector representation of the set
 \[A = \{a_1, a_2, a_3, a_4\} \]

<table>
<thead>
<tr>
<th>Set</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 = {a_1, a_2, a_3})</td>
<td>1110</td>
</tr>
<tr>
<td>(F_2 = {a_2, a_4})</td>
<td>0101</td>
</tr>
<tr>
<td>(F_3 = {a_1, a_3})</td>
<td>1010</td>
</tr>
<tr>
<td>(F_4 = {a_2, a_3, a_4})</td>
<td>0111</td>
</tr>
</tbody>
</table>

There is an exact cover if some subset of the numbers sum to ...

18-51: **Knapsack**

• Each set will be represented by a number – bit-vector representation of the set
 \[A = \{a_1, a_2, a_3, a_4\} \]

<table>
<thead>
<tr>
<th>Set</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 = {a_1, a_2, a_3})</td>
<td>1110</td>
</tr>
<tr>
<td>(F_2 = {a_2, a_4})</td>
<td>0101</td>
</tr>
<tr>
<td>(F_3 = {a_1, a_3})</td>
<td>1010</td>
</tr>
<tr>
<td>(F_4 = {a_2, a_3, a_4})</td>
<td>0111</td>
</tr>
</tbody>
</table>

There is an exact cover if some subset of the numbers sum to 1111

18-52: **Knapsack**

• Bug in our reduction:
 \[A = \{a_1, a_2, a_3, a_4\} \]

<table>
<thead>
<tr>
<th>Set</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 = {a_2, a_3, a_4})</td>
<td>0111</td>
</tr>
<tr>
<td>(F_2 = {a_2, a_4})</td>
<td>0101</td>
</tr>
<tr>
<td>(F_3 = {a_3})</td>
<td>0010</td>
</tr>
<tr>
<td>(F_3 = {a_4})</td>
<td>0001</td>
</tr>
<tr>
<td>(F_4 = {a_1, a_3, a_4})</td>
<td>1011</td>
</tr>
</tbody>
</table>

• \(0111 + 0101 + 0001 + 0010 = 1111 \)

• What can we do?

18-53: **Knapsack**

• Construct the numbers just as before

• Do addition in base \(m \), where \(m \) is the number of element in \(A \). \(A = \{a_1, a_2, a_3, a_4\} \)

<table>
<thead>
<tr>
<th>Set</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1 = {a_2, a_3, a_4})</td>
<td>0111</td>
</tr>
<tr>
<td>(F_2 = {a_2, a_4})</td>
<td>0101</td>
</tr>
<tr>
<td>(F_3 = {a_3})</td>
<td>0010</td>
</tr>
<tr>
<td>(F_3 = {a_4})</td>
<td>0001</td>
</tr>
<tr>
<td>(F_4 = {a_1, a_3, a_4})</td>
<td>1011</td>
</tr>
</tbody>
</table>

• \(0111 + 0101 + 0001 + 0010 = 0223 \)
• No subset of numbers sums to 1111

18-54: Integer Partition

• Integer Partition
 • Special Case of the Knapsack problem
 • “Half sum” \(H \) (sum of all elements in the set / 2) is an integer
 • Limit \(k = H \)

• Integer Partition is \(\text{NP} \)-Complete
 • Reduce Knapsack to Integer Partition

18-55: Integer Partition

• Given any instance of the Knapsack problem
 • Set of integers \(S = \{a_1, a_2, \ldots, a_n\} \) limit \(k \)
 • Is there a subset of \(S \) that sums to \(k \)?

• Create an instance of Integer Partition
 • Set of integers \(S = \{a_1, a_2, \ldots, a_m\} \)
 • Can we divide \(S \) into two subsets that have the same sum?
 • Equivalently, is there a subset if \(S \) that sums to \(H = (\sum_{i=1}^m a_i)/2 \)

18-56: Integer Partition

• Given any instance of the Knapsack problem
 • Set of integers \(S = \{a_1, a_2, \ldots, a_n\} \) limit \(k \)

• We create the following instance of Integer Partition:
 • \(S' = S \cup \{2H + 2k, 4H\} \) (\(H \) is the half sum of \(S \))

18-57: Integer Partition

• \(S' = S \cup \{2H + 2k, 4H\} \) (\(H \) is the half sum of \(S \))
 • If there is a partition for \(S' \), \(2H + 2k \) and \(4H \) must be in separate partitions (why)?

\[
4H + \sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_j \in S - P} a_j
\]

18-58: Integer Partition

\[
4H + \sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_j \in S - P} a_j
\]
• Adding $\sum_{a_i \in P} a_i$ to both sides:

\[
4H + 2 \sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_j \in S} a_j \\
4H + 2 \sum_{a_i \in P} a_i = 4H + 2k \\
\sum_{a_i \in P} a_i = k
\]

• Thus, if S' has a partition, then there must be some subset of S that sums to k

18-59: **Directed Hamiltonian Cycle**

• Given any directed graph G, determine if G has a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

![Directed Hamiltonian Cycle](image1.png)

18-60: **Directed Hamiltonian Cycle**

• Given any directed graph G, determine if G has a Hamiltonian Cycle
 - Cycle that includes every node in the graph exactly once, following the direction of the arrows

![Directed Hamiltonian Cycle](image2.png)

18-61: **Directed Hamiltonian Cycle**

• The Directed Hamiltonian Cycle problem is NP-Complete
• Reduce Exact Cover to Directed Hamiltonian Cycle
 - Given any set A, and family of subsets F:
 - Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

18-62: **Directed Hamiltonian Cycle**

• Widgets:
Consider the following graph segment:

If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either $a \rightarrow u \rightarrow v \rightarrow w \rightarrow b$ or $c \rightarrow w \rightarrow v \rightarrow u \rightarrow d$ – but not both (why)?

18-63: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-64: Directed Hamiltonian Cycle

- Widgets:
 - XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

18-65: Directed Hamiltonian Cycle

- Add a vertex for every variable in A (+ 1 extra)
18-66: Directed Hamiltonian Cycle

- Add a vertex for every subset F (+ 1 extra)

18-67: Directed Hamiltonian Cycle

- Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable
18-68: Directed Hamiltonian Cycle

- Add 2 edges from F_i to F_{i+1}. One edge will be a “short edge”, and one will be a “long edge”.

18-69: Directed Hamiltonian Cycle

- Add an edge from a_{i-1} to a_i for each subset a_i appears in.
18-70: Directed Hamiltonian Cycle

- Each edge \((a_{i-1}, a_i)\) corresponds to some subset that contains \(a_i\). Add an XOR link between this edge and the long edge of the corresponding subset.

18-71: Directed Hamiltonian Cycle

\[
F_0 = \{ a_1, a_2 \} \\
F_1 = \{ a_2, a_3 \} \\
F_2 = \{ a_3 \} \\
F_3 = \{ a_1 \}
\]
Directed Hamiltonian Cycle

$F_1 = \{ a_2, a_4 \}$
$F_2 = \{ a_2, a_1 \}$
$F_3 = \{ a_1, a_3 \}$
$F_4 = \{ a_2 \}$

XOR edge