Automata Theory
CS411 2015F-02

Formal Languages

BEW |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

02-0: Alphabets & Strings

® An alphabet X is a finite set of symbols
.21={a,b,...,2}
~ 22 —_ {O, 1}

® A string is a finite sequence of symbols from an
alphabet

* fire, truck are both strings over {a, ..., z}
® |ength of a string is the number of symbols in the
string

o [fire| =4,

truck| =5

02-1: Alphabets & Strings

® The empty string € is a string of 0 characters
* lef=0
® o is the concatenation operator
e w; = fire, wsy = truck
* w; 0w, = firetruck
* w, 0 w; = truckfire
* w, 0 W, = trucktruck
® Often drop the o: w,w, = firetruck

® For any string w, we = w

02-2: Concatenation & Reversal

® We can concatenate a string with itself:
e w!l =w
* w? = ww
* W’ = www
® By definition, w’ = ¢
® Can reverse a string: w
e truck® = kcurt

02-3: Formal Language

® A formal language (or just language) is a set of
strings
e [, ={a, aa, abba, bbba}
e [, ={car, truck, goose}
o Lo={1,11, 111, 1111, 11111, ..}

® A language can be either finite or infinite

02-2: Language Concatenation

® We can concatenate languages as well as strings
.LLQ {U)’U UJELl/\UGLQ}
® {a, ab}{bb, b} =

02-5: Language Concatenation

® We can concatenate languages as well as strings
® [Ly={wv:wée€ L ANv € Ly}

® [a, ab}{bb, b} = {abb, ab, abbb}

® {a, ab}{a, ab} =

02-6: Language Concatenation

® We can concatenate languages as well as strings
® [Ly={wv:wée€ L ANv € Ly}

® {a, ab}{bb, b} = {abb, ab, abbb}

® {a, ab}{a, ab} = {aa, aab, aba, abab}
ERERCEREREEE

02.7: Language Concatenation

® We can concatenate languages as well as strings
® [Ly={wv:wée€ L ANv € Ly}

® {a, ab}{bb, b} = {abb, ab, abbb}

® {a, ab}{a, ab} = {aa, aab, aba, abab}

® {a, aa}{a, aa} = {aa, aaa, aaaa}

What can we say about
and ‘LQ‘ —n?

, if we know |L;| =m

02-8: Language Concatenation

® We can concatenate a language with itself, just like
strings

e ['=L [?=LL,L°=LLL, etc.
e What should L° be, and why?

02-9: Language Concatenation

® We can concatenate a language with itself, just like

strings
e ['=L L°=LL,L°=LLL, etc.
* L' ={¢}

- {} is the empty language
- {€} is the trivial language

® Kleene Closure (L*)
e *=["UL'UL*UL’U

02-10: Regular Expressions

® Regular expressions are a way to describe formal
anguages

® Regular expressions are defined recursively
* Base case — simple regular expressions

e Recursive case — how to build more complex
regular expressions from simple regular
expressions

02-11: Regular Expressions

€ IS a regular expression, representing {¢}
() is a regular expression, representing {}

® Ya € ., ais aregular expression representing {a}

if r, and r, are regular expressions, then (r;r,) is a
regular expression

e L[(T‘ﬂ“g)] = L[Tl] O L[Tg]
if r, and r, are regular expressions, then (r; +)
IS a regular expression

o L|(ry 4+ 1ry)| = Lir)| U L|ry]

if r is regular expressions, then (r*) is a regular
expression

o L{(r*)] = (L|r])*

02-12: Regular Expressions

Regular Expression Definition

—

Regular Expression Language

€ e] = {¢}
0 L) = {}
acX Lla]={a}

;7“17“2] = L|r{|L[r,]
(71 4 72)] = LU Lirs]
()] = (L]r])"

=
5
alislslslslis

02-13: Regular Expressions

(a+b)(b%))a)
a((a+b)))a)

a”)(b”))

*
*
*
* ((ab)’)

02-14: Regular Expressions

* (((a+b)(b™))a)

e {aa, ba, aba, bba, abba, bbba, abbba, bbbba,
.

* ((al(a+b)’))a)

e {aa, aaa, aba, aaaa, aaba, abaa, abba, ...}

* ((@")(b%))
e {¢, a, b, aa, ab, bb, aaa, aab, abb, bbb, .. .}

* ((ab)’)
* {¢, ab, abab, ababab, abababab, .. .}

02-15: Regular Expressions

® All those parenthesis can be confusing
* Drop them!!

® (((ab)b)a) becomes abba
® What about a+bb*a — what's the problem?

02-16: Regular Expressions

® All those parenthesis can be confusing
* Drop them!!

® (((ab)b)a) becomes abba
® What about a+bb*a — what's the problem?

e Ambiguous!
* a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a ?

02-17: r.e. Precedence

From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expres-
sions: (a+b)(a+b))

02-18: Regular Expressions

® |ntuitive Reading of Regular Expressions
e Concatenation == “is followed by”
* +=="0r

* == “Zero or more occurances”

()(b)(a-+b)
+b)”

aab(aa)

/-\

02-19: Regular Expressions

® All strings over {a,b} that start with an a

02-20: Regular Expressions

® All strings over {a,b} that start with an a
e a(a+b)”
® All strings over {a,b} that are even in length

02-21: Regular Expressions

® All strings over {a,b} that start with an a
e a(a+b)”

® All strings over {a,b} that are even in length
* ((a+b)(a+b))”

® All strings over {0,1} that have an even number of
1's.

02-22: Regular Expressions

® All strings over {a,b} that start with an a
e a(a+b)”
® All strings over {a,b} that are even in length
* ((a+b)(a+b))”
® All strings over {0,1} that have an even number of
1's.
e 0*(10*10%)"
® All strings over a, b that start and end with the
same letter

02-23: Regular Expressions

® All strings over {a,b} that start with an a
e a(a+b)”
® All strings over {a,b} that are even in length
* ((a+b)(a+b))”
® All strings over {0,1} that have an even number of
1's.
e 0*(10*10%)"
® All strings over a, b that start and end with the
same letter

e a(a+b)*a + b(a+b)’b+a + Db

02-24: Regular Expressions

® All strings over {0, 1} with no occurrences of 00

02-25: Regular Expressions

® All strings over {0, 1} with no occurrences of 00
e 1*(011*)*(0+17%)
® All strings over {0, 1} with exactly one occurrence
of 00

02-26: Regular Expressions

® All strings over {0, 1} with no occurrences of 00
e 1*(011*)*(0+17%)
® All strings over {0, 1} with exactly one occurrence
of 00

e 1*(011*)*00(11*0)*1*
® All strings over {0, 1} that contain 101

02-27: Regular Expressions

® All strings over {0, 1} with no occurrences of 00
e 1*(011*)*(0+17%)
® All strings over {0, 1} with exactly one occurrence
of 00

e 1*(011*)*00(11*0)*1*
® All strings over {0, 1} that contain 101
e (0+1)*101(0+1)*
® All strings over {0, 1} that do not contain 01

02-28: Regular Expressions

® All strings over {0, 1} with no occurrences of 00
e 1*(011*)*(0+17%)
® All strings over {0, 1} with exactly one occurrence
of 00
e 1*(011*)*00(11*0)*1*
® All strings over {0, 1} that contain 101
e (0+1)*101(0+1)*
® All strings over {0, 1} that do not contain 01
e 1%0*

02-29: Regular Expressions

k%)

® All strings over {/,
comments

e Use quotes to differentiate the
from the regular expression *

e Use[a-z]tostandfor(a+b+c+d+ ... +2)

,a, ...,2}that form valid C

1%, 34

in the input

02-30: Regular Expressions

k%)

® All strings over {/,
comments

e Use quotes to differentiate the
from the regular expression *

e Use[a-z]tostandfor(a+b+c+d+ ... +2)
* (a-z]+/)” () a-z)([a-z]+/)")" ()
* This exact problem (finding a regular

expression for C comments) has actually been
used in an industrial context.

,a, ...,2}that form valid C

1%, 34

in the input

02-31: Regular Languages

® A language is regular if it can be described by a
regular expression.

® The Regular Languages(Lrgq) is the set of all
languages that can be represented by a regular
expression

e Set of set of strings
® Raises the question: Are there languages that are
not regular?
e Stay tuned!

	{small lecturenumber -	heblocknumber :} Alphabets & Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Alphabets & Stringsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Concatenation & Reversaladdtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Formal Languageaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Language Concatenationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} r.e. Precedenceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Regular Languagesaddtocounter {blocknumber}{1}

