CS411 2015F-02 Formal Languages

02-0: Alphabets & Strings

e An alphabet Y is a finite set of symbols

e ¥y ={ab,...,z}
[] 22={0,1}

e A string is a finite sequence of symbols from an alphabet
e fire, truck are both strings over {a, ..., z}
e length of a string is the number of symbols in the string
o |fire| =4, |truck| =5
02-1: Alphabets & Strings

e The empty string ¢ is a string of O characters
e le[=0
e o is the concatenation operator

e w; = fire, wy = truck
e w; o wy = firetruck
e wy o wy = truckfire

® wsy 0wy = trucktruck
e Often drop the o: wjws = firetruck
e For any string w, we = w
02-2: Concatenation & Reversal

e We can concatenate a string with itself:

1

e W =W

.’LUQZ’LUU)
3

o W = wWww

e By definition, w° = ¢

e Can reverse a string: w’

o truck” = kcurt
02-3: Formal Language

o A formal language (or just language) is a set of strings

e [; ={a, aa, abba, bbba}
e Lo ={car, truck, goose}
o I3 2{1, 11,111, 1111, 11111, .. }

e A language can be either finite or infinite

CS411 2015F-02 Formal Languages

02-4: Language Concatenation

e We can concatenate languages as well as strings
o [1Ly={wv:wée L Av € Ly}
e {a,ab}{bb,b} =

02-5: Language Concatenation

e We can concatenate languages as well as strings
o [1Ly={wv:wée L AveE Ly}

e {a,ab}{bb, b} = {abb, ab, abbb}

e {a,ab}{a,ab} =

02-6: Language Concatenation

e We can concatenate languages as well as strings
o [1Ly={wv:wée L AveE Ly}

e {a,ab}{bb, b} = {abb, ab, abbb}

e {a,ab}{a, ab} = {aa, aab, aba, abab}

o {a,aa}{a, aa} =

02-7: Language Concatenation

e We can concatenate languages as well as strings
o [1Lo={wv:wée L Av € Ly}

e {a,ab}{bb, b} = {abb, ab, abbb}

e {a,ab}{a, ab} = {aa, aab, aba, abab}

e {a,aa}{a, aa} = {aa, aaa, aaaa}

What can we say about |L; Lo, if we know |L;| = m and |Ls| = n?
02-8: Language Concatenation

e We can concatenate a language with itself, just like strings
o ['=L,I?=LL,L?>=LLL,etc.
e What should LY be, and why?

02-9: Language Concatenation

e We can concatenate a language with itself, just like strings
e ['=L,L>=LL,L?>=LLL,etc.
.« 10={q)
o {} is the empty language

CS411 2015F-02 Formal Languages

o {¢} is the trivial language
e Kileene Closure (L*)
o L*=L°UL'UL*ULU...
02-10: Regular Expressions

e Regular expressions are a way to describe formal languages
e Regular expressions are defined recursively

e Base case — simple regular expressions

e Recursive case — how to build more complex regular expressions from simple regular expressions

02-11: Regular Expressions

€ is a regular expression, representing {¢}

() is a regular expression, representing { }

Va € ¥, a is a regular expression representing {a}

if 1 and ro are regular expressions, then (r173) is a regular expression

e L[(r172)] = L[r1] o L[rs]

if 71 and ro are regular expressions, then (r1 + r2) is a regular expression

[] L[(Tl + TQ)] = L[’I’l] U L[’I’Q]

if r is regular expressions, then (r*) is a regular expression
o L{(r")] = (LIr])"

02-12: Regular Expressions
Regular Expression Definition

Regular Expression Language

e Lle] ={¢}
0 L] =}
ae€eX¥ Lla]={a} 02-13: Regular Expressions
(rire) Llrira] = L{r]L[ro]
(ri+r2) L[(r1 +r2)] = L[r] U L[ro]
(r*) LI = (L[r])*

¢ (((a+b)(b*))a)
* ((a((a+b)*))a)
o ((a*)(b*))

* ((ab)*)

02-14: Regular Expressions

¢ (((a+b)(b*))a)

CS411 2015F-02 Formal Languages

e {aa, ba, aba, bba, abba, bbba, abbba, bbbba, .. .}
e ((a((atb)*))a)

e {aa, aaa, aba, aaaa, aaba, abaa, abba, ...}
o ((a*)(b™))

e {c, a,b, aa, ab, bb, aaa, aab, abb, bbb, ...}
e ((ab)*)

e {¢, ab, abab, ababab, abababab, . ..}

02-15: Regular Expressions

e All those parenthesis can be confusing
e Drop them!!
e (((ab)b)a) becomes abba

e What about a+bb*a — what’s the problem?
02-16: Regular Expressions

o All those parenthesis can be confusing
e Drop them!!

e (((ab)b)a) becomes abba

e What about a+bb*a — what’s the problem?
e Ambiguous!

o a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a ?

02-17: r.e. Precedence
From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expressions: (a+b)(a+b)) 02-18: Regular Expressions

e Intuitive Reading of Regular Expressions
e Concatenation == “is followed by”
e +=="or"

e * == ‘“zero or more occurances”

CS411 2015F-02 Formal Languages

o (a+b)(a+b)(a+b)
o (at+b)*
e aab(aa)*
02-19: Regular Expressions
e All strings over {a,b} that start with an a
02-20: Regular Expressions
e All strings over {a,b} that start with an a
e a(atb)*
e All strings over {a,b} that are even in length
02-21: Regular Expressions
e All strings over {a,b} that start with an a
e a(atb)*
e All strings over {a,b} that are even in length

o ((at+b)(at+b))*

e All strings over {0,1} that have an even number of 1’s.
02-22: Regular Expressions

e All strings over {a,b} that start with an a
e a(atb)*
e All strings over {a,b} that are even in length
e ((a+b)(atb))*
e All strings over {0,1} that have an even number of 1’s.
o 0*(10*10%*)*
o All strings over a, b that start and end with the same letter

02-23: Regular Expressions

e All strings over {a,b} that start with an a
e a(a+b)*
e All strings over {a,b} that are even in length
e ((a+b)(atb))*
e All strings over {0,1} that have an even number of 1’s.

o 0%(10%10%)*

CS411 2015F-02 Formal Languages

e All strings over a, b that start and end with the same letter
e a(a+b)*a + b(a+b)*b+a+b
02-24: Regular Expressions
e All strings over {0, 1} with no occurrences of 00
02-25: Regular Expressions
e All strings over {0, 1} with no occurrences of 00
o 1#(011%)*(0+1%)
e All strings over {0, 1} with exactly one occurrence of 00
02-26: Regular Expressions
e All strings over {0, 1} with no occurrences of 00
o 1#(011%)*(0+1%)
e All strings over {0, 1} with exactly one occurrence of 00
o 1¥(011%)*00(11*0)*1*
e All strings over {0, 1} that contain 101
02-27: Regular Expressions
e All strings over {0, 1} with no occurrences of 00
o 1*%(011%)*(0+1%)
e All strings over {0, 1} with exactly one occurrence of 00
e 1¥(011%)*00(11*0)*1*
e All strings over {0, 1} that contain 101
o (0+1)*101(0+1)*
e All strings over {0, 1} that do not contain 01
02-28: Regular Expressions
e All strings over {0, 1} with no occurrences of 00
o 1¥(011%)*(0+1%)
e All strings over {0, 1} with exactly one occurrence of 00
o 1*%(011%)*00(11*0)*1*
e All strings over {0, 1} that contain 101
o (0+1)*101(0+1)*

e All strings over {0, 1} that do not contain 01

CS411 2015F-02 Formal Languages

o [*0*
02-29: Regular Expressions

e All strings over {/, “*”, a, ..., z } that form valid C comments
e Use quotes to differentiate the “*” in the input from the regular expression *
e Use [a-z]tostand for (a+b+c+d+...+2)

02-30: Regular Expressions

e All strings over {/, “*”, a, ..., z } that form valid C comments

e Use quotes to differentiate the “*” in the input from the regular expression *
e Use [a-z]to stand for (a+b+c+d+...+2)
° /46*’?([a_z]+/)* (“*”(“*”)*[a—Z]([a—Z]+/)*)* 46*’?(46*’?)*/

o This exact problem (finding a regular expression for C comments) has actually been used in an industrial

context.
02-31: Regular Languages

e A language is regular if it can be described by a regular expression.

e The Regular Languages(L rr¢) is the set of all languages that can be represented by a regular expression

o Set of set of strings
e Raises the question: Are there languages that are not regular?

e Stay tuned!

