
CS411 2015F-02 Formal Languages 1

02-0: Alphabets & Strings

• An alphabet Σ is a finite set of symbols

• Σ1 = {a, b, . . ., z}

• Σ2 = {0, 1}

• A string is a finite sequence of symbols from an alphabet

• fire, truck are both strings over {a, . . ., z}

• length of a string is the number of symbols in the string

• |fire| = 4, |truck| = 5

02-1: Alphabets & Strings

• The empty string ǫ is a string of 0 characters

• |ǫ| = 0

• ◦ is the concatenation operator

• w1 = fire, w2 = truck

• w1 ◦ w2 = firetruck

• w2 ◦ w1 = truckfire

• w2 ◦ w2 = trucktruck

• Often drop the ◦: w1w2 = firetruck

• For any string w, wǫ = w

02-2: Concatenation & Reversal

• We can concatenate a string with itself:

• w1 = w

• w2 = ww

• w3 = www

• By definition, w0 = ǫ

• Can reverse a string: wR

• truckR = kcurt

02-3: Formal Language

• A formal language (or just language) is a set of strings

• L1 ={a, aa, abba, bbba}

• L2 ={car, truck, goose}

• L3 ={1, 11, 111, 1111, 11111, . . .}

• A language can be either finite or infinite



CS411 2015F-02 Formal Languages 2

02-4: Language Concatenation

• We can concatenate languages as well as strings

• L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

• {a, ab}{bb, b} =

02-5: Language Concatenation

• We can concatenate languages as well as strings

• L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

• {a, ab}{bb, b} = {abb, ab, abbb}

• {a, ab}{a, ab} =

02-6: Language Concatenation

• We can concatenate languages as well as strings

• L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

• {a, ab}{bb, b} = {abb, ab, abbb}

• {a, ab}{a, ab} = {aa, aab, aba, abab}

• {a, aa}{a, aa} =

02-7: Language Concatenation

• We can concatenate languages as well as strings

• L1L2 = {wv : w ∈ L1 ∧ v ∈ L2}

• {a, ab}{bb, b} = {abb, ab, abbb}

• {a, ab}{a, ab} = {aa, aab, aba, abab}

• {a, aa}{a, aa} = {aa, aaa, aaaa}

What can we say about |L1L2|, if we know |L1| = m and |L2| = n?

02-8: Language Concatenation

• We can concatenate a language with itself, just like strings

• L1 = L,L2 = LL,L3 = LLL, etc.

• What should L0 be, and why?

02-9: Language Concatenation

• We can concatenate a language with itself, just like strings

• L1 = L,L2 = LL,L3 = LLL, etc.

• L0 = {ǫ}

• {} is the empty language



CS411 2015F-02 Formal Languages 3

• {ǫ} is the trivial language

• Kleene Closure (L∗)

• L∗ = L0 ∪ L1 ∪ L2 ∪ L3 ∪ . . .

02-10: Regular Expressions

• Regular expressions are a way to describe formal languages

• Regular expressions are defined recursively

• Base case – simple regular expressions

• Recursive case – how to build more complex regular expressions from simple regular expressions

02-11: Regular Expressions

• ǫ is a regular expression, representing {ǫ}

• ∅ is a regular expression, representing {}

• ∀a ∈ Σ, a is a regular expression representing {a}

• if r1 and r2 are regular expressions, then (r1r2) is a regular expression

• L[(r1r2)] = L[r1] ◦ L[r2]

• if r1 and r2 are regular expressions, then (r1 + r2) is a regular expression

• L[(r1 + r2)] = L[r1] ∪ L[r2]

• if r is regular expressions, then (r∗) is a regular expression

• L[(r∗)] = (L[r])∗

02-12: Regular Expressions

Regular Expression Definition

Regular Expression Language

ǫ L[ǫ] = {ǫ}
∅ L[∅] = {}

a ∈ Σ L[a] = {a}
(r1r2) L[r1r2] = L[r1]L[r2]

(r1 + r2) L[(r1 + r2)] = L[r1]
⋃
L[r2]

(r∗) L[(r∗)] = (L[r])∗

02-13: Regular Expressions

• (((a+b)(b*))a)

• ((a((a+b)*))a)

• ((a*)(b*))

• ((ab)*)

02-14: Regular Expressions

• (((a+b)(b*))a)



CS411 2015F-02 Formal Languages 4

• {aa, ba, aba, bba, abba, bbba, abbba, bbbba, . . .}

• ((a((a+b)*))a)

• {aa, aaa, aba, aaaa, aaba, abaa, abba, . . .}

• ((a*)(b*))

• {ǫ, a, b, aa, ab, bb, aaa, aab, abb, bbb, . . .}

• ((ab)*)

• {ǫ, ab, abab, ababab, abababab, . . .}

02-15: Regular Expressions

• All those parenthesis can be confusing

• Drop them!!

• (((ab)b)a) becomes abba

• What about a+bb*a – what’s the problem?

02-16: Regular Expressions

• All those parenthesis can be confusing

• Drop them!!

• (((ab)b)a) becomes abba

• What about a+bb*a – what’s the problem?

• Ambiguous!

• a+(b(b*))a, (a+b)(b*)a, (a+(bb))*a ?

02-17: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expressions: (a+b)(a+b)) 02-18: Regular Expressions

• Intuitive Reading of Regular Expressions

• Concatenation == “is followed by”

• + == “or”

• * == “zero or more occurances”



CS411 2015F-02 Formal Languages 5

• (a+b)(a+b)(a+b)

• (a+b)*

• aab(aa)*

02-19: Regular Expressions

• All strings over {a,b} that start with an a

02-20: Regular Expressions

• All strings over {a,b} that start with an a

• a(a+b)*

• All strings over {a,b} that are even in length

02-21: Regular Expressions

• All strings over {a,b} that start with an a

• a(a+b)*

• All strings over {a,b} that are even in length

• ((a+b)(a+b))*

• All strings over {0,1} that have an even number of 1’s.

02-22: Regular Expressions

• All strings over {a,b} that start with an a

• a(a+b)*

• All strings over {a,b} that are even in length

• ((a+b)(a+b))*

• All strings over {0,1} that have an even number of 1’s.

• 0*(10*10*)*

• All strings over a, b that start and end with the same letter

02-23: Regular Expressions

• All strings over {a,b} that start with an a

• a(a+b)*

• All strings over {a,b} that are even in length

• ((a+b)(a+b))*

• All strings over {0,1} that have an even number of 1’s.

• 0*(10*10*)*



CS411 2015F-02 Formal Languages 6

• All strings over a, b that start and end with the same letter

• a(a+b)*a + b(a+b)*b + a + b

02-24: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

02-25: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

• 1*(011*)*(0+1*)

• All strings over {0, 1} with exactly one occurrence of 00

02-26: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

• 1*(011*)*(0+1*)

• All strings over {0, 1} with exactly one occurrence of 00

• 1*(011*)*00(11*0)*1*

• All strings over {0, 1} that contain 101

02-27: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

• 1*(011*)*(0+1*)

• All strings over {0, 1} with exactly one occurrence of 00

• 1*(011*)*00(11*0)*1*

• All strings over {0, 1} that contain 101

• (0+1)*101(0+1)*

• All strings over {0, 1} that do not contain 01

02-28: Regular Expressions

• All strings over {0, 1} with no occurrences of 00

• 1*(011*)*(0+1*)

• All strings over {0, 1} with exactly one occurrence of 00

• 1*(011*)*00(11*0)*1*

• All strings over {0, 1} that contain 101

• (0+1)*101(0+1)*

• All strings over {0, 1} that do not contain 01



CS411 2015F-02 Formal Languages 7

• 1*0*

02-29: Regular Expressions

• All strings over {/, “*”, a, . . ., z } that form valid C comments

• Use quotes to differentiate the “*” in the input from the regular expression *

• Use [a-z] to stand for (a + b + c + d + . . . + z)

02-30: Regular Expressions

• All strings over {/, “*”, a, . . ., z } that form valid C comments

• Use quotes to differentiate the “*” in the input from the regular expression *

• Use [a-z] to stand for (a + b + c + d + . . . + z)

• /“*”([a-z]+/)* (“*”(“*”)*[a-z]([a-z]+/)*)* “*”(“*”)*/

• This exact problem (finding a regular expression for C comments) has actually been used in an industrial

context.

02-31: Regular Languages

• A language is regular if it can be described by a regular expression.

• The Regular Languages(LREG) is the set of all languages that can be represented by a regular expression

• Set of set of strings

• Raises the question: Are there languages that are not regular?

• Stay tuned!


