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o7-0: FUN with Finite Automata

® Create a Finite Automata (DFA or NFA) for the
language:
e L ={0"1":n >0}
e {01,0011, 000111, 00001111, ...}




o7-1: FUN with Finite Automata

e I.={0"1":n > 0} is not regular!
® Why?
* Need to keep track of how many O’s there are,
and match 1’s

e Only way to store information in DFA is through
what state the machine is in

* Finite number of states (D FA)
e Unbounded number of O’s before the 1’s




07-2: Non-Regular Languages

® |[fa DFA M has k states, and a string w accepted
by M has n characters, n > k, computation must
Include a loop

® Pigeonhole Principle:
e More transitions than states

e Some transition must enter the same state
twice




07-3: Non-Regular Languages

A

y
® Break string into w = xyz

® |f w = xyz is accepted, then v’ = zyyz will also be
accepted

® |f w = zyz is accepted, then w’' = xyyyz will also
be accepted

® |f w = zxyz is accepted, then w’ = xz will also be
accepted




o7-4: Pumping Lemma

® |f a language L is regular, then:

e dn > 1 such that any string w € L with |w| > n
can be rewritten as w = xyz such that
c Yy Fe€
- |lzy| <n
« xy'z € Lforalli >0




o7-5: Using the Pumping Lemma

® Assume L is regular
® | et n be the constant of the pumping lemma
® Create a string w such that |w| > n

® Show that for every legal decomposition of
w = xyz such that:

e |xy| <n

*YFe

There is an ¢ such that xy'z & L
® Conclude that L must not be regular




o7-6: Using the Pumping Lemma

® Assume L is regular
® | et n be the constant of the pumping lemma
® Create a string w such that |w| > n

® Show that for every legal decomposition of
w = xyz such that:

e |xy| <n

*YFe

There is an ¢ such that xy'z & L
® Conclude that L must not be regular

L={{0"1":n >0}




o7-7: Using the Pumping Lemma

L=40"1":n> 0}

® | et n be the constant of the pumping lemma
® Consider the string w = 0"1"

® |f we break w = xyz such that |zy| < n, |y| > 0,
then x and y must be all O’s

e x =0,y =0" 2=0""71"
e Consider w’ = zy?z = 0"*1" for some

0<k<n
- w & L

® [ is not regular (by the pumping lemma)




o7-8: Using the Pumping Lemma

® Assume L is regular
® | et n be the constant of the pumping lemma
® Create a string w such that |w| > n

® Show that for every legal decomposition of
w = xyz such that:

e |xy| <n

*YFe

There is an ¢ such that xy'z & L
® Conclude that L must not be regular

L=Aww:we (a+b)*}




o7-9: Using the Pumping Lemma

L=Aww:we (a+b)*}

® | et n be the constant of the pumping lemma
® Consider w = a"ba"b € L

® |f we break w = xyz such that |zy| < n, |y| > 0,
then x and y must be all a’s

e v =a’,y=a" z=a""7ba"

® Consider w' = zy?z = a"™*ba™b. As long as k > 0,
the first half of w’ contains all a’s, while the second
half contains two b’s. Thus w’ is not of the form
ww, and is not in L. Hence, L is not regular by the
pumping lemma.




o7-10: Using the Pumping Lemma

You have an adversary who thinks L is regular. You need to prove that your adversary is
wrong.

you Language L is not regular!

adv Yesitis! | have a DFA to prove it!

you Oh really? How many states are in your DFA?
adv n

you OK, here’s a string w € L with |w| > n. Your machine must accept w — but since
|lw| > n, there must be a loop in your computation. Where’s the loop?

adv Right here! (breaks w into xyz, where y is the part of the string that goes through the
loop)

you Ah hah! If we go through the loop 2 times instead of 1, we get a string not in L that
your machine will accept!

adv Drat!




o7-11: Using the Pumping Lemma

You have an adversary who thinks L is regular. You
need to prove that your adversary is wrong.

® Your adversary picks an n

® You pick a w € L (such that |w| > n)

® Your adversary breaks w into xyz (subject to
zy| <n, |y| > 0)

® You pick an i such that xy'z & L




o7-12: Using the Pumping Lemma

You have an adversary who thinks L is regular. You
need to prove that your adversary is wrong.

® Your adversary picks an n

® You pick a w € L (such that |w| > n)

® Your adversary breaks w into xyz (subject to
zy| <n, |y| > 0)

® You pick an i such that xy'z & L

You don't really have an adversary, so you need to
show that for any n, you can create a string w, and for
any way that w can be broken into xyz, there is an ¢
such that xy'z € L




07-13: Using the Pumping Lemma

® Assume L is regular
® | et n be the constant of the pumping lemma
® Create a string w such that |w| > n

® Show that for every legal decomposition of
w = xyz such that:

e |xy| <n

*YFe

There is an ¢ such that xy'z & L
® Conclude that L must not be regular

L =A{w:w e (a*b*) A w contains more a’s than b’s }




o7-14: Using the Pumping Lemma

L =Aw:w e (a*b*) A w contains more a’s than b’s }

® | et n be the constant of the pumping lemma
® Consider w = a"b" ! € L

® |f we break w = zyz such that |zy| < n, |y| > 0,

then x and y must be all a’s

s rx=a,y=a" z=a" " "Ip!

® Consider w' = 2¢y°z = a"*b" 1. Aslong as k > 0,
w' has at least as many b’'s as a’s, and is not in L.
Hence, L is not regular, by the pumping lemma.




07-15: Using the Pumping Lemma

® Assume L is regular
® | et n be the constant of the pumping lemma
® Create a string w such that |w| > n

® Show that for every legal decomposition of
w = xyz such that:

e |xy| <n

*YFe

There is an ¢ such that xy'z & L
® Conclude that L must not be regular

L={w:w € (a+b)* AN w has an even number of a’s
and an odd number of b’s }




o7-16: Using the Pumping Lemma

L ={w:w € (a+b)* AN w has an even number of a’s
and an odd number of b’s }

® | et n be the constant of the pumping lemma

® Consider w = a*"b € L

® |f we break w = zyz such that |zy| < n, |y| > 0,
then x and y must be all a’s

s v =a’,y =a" z=a*" "D
® Aslong as kis even, w' = zy'z € L for all ¢
Remember, we don’t get to choose how the string is broken

Into xyz — need to show that for any way the string can be
broken into zyz, there exists an ¢ such that zy'z ¢ L




o7-17: Using the Pumping Lemma

L ={w:w € (a+b)* AN w has an even number of a’s
and an odd number of b’s }

® We failed to prove L is not regular. Does that mean
that L must be regular?




o7-18: Using the Pumping Lemma

L ={w:w € (a+b)* AN w has an even number of a’s
and an odd number of b’s }

® We failed to prove L is not regular. Does that mean
that L must be regular?

* No! We may not have chosen a clever enough
w

e Similarly, failing to create an NFA for a
language does not prove that it is not regular.

® How can we prove that L is regular?




o7-19: Using the Pumping Lemma

L ={w:w € (a+b)* AN w has an even number of a’s
and an odd number of b’s }

® We failed to prove L is not regular. Does that mean
that L must be regular?

* No! We may not have chosen a clever enough
w

e Similarly, failing to create an NFA for a
language does not prove that it is not regular.
® How can we prove that L is regular?

e Create a regular expression, DFA, or NFA that
describes L




o7-20: Closure Properties

Since some languages are regular, and some are not,
we can consider closure properties of regular
languages

® |s Lrpce closed under union?

® |s Lrpq closed under complementation?

® |s Lyr- closed under intersection?




o7-21: Closure Properties

® |s Lppa closed under union?




o7-22: Closure Properties

® |s Lppa closed under union?

Ly = L|ry|, Ly = L|r]
LiU Ly = L{(r; + )]




o7-23: Closure Properties

® |s Lppq closed under complementation?

Given any DFA M = (K, X, 6, s, I'), create

M = (K', % ¢, s, F') such that L|M'| = L|M]




o7-2a: Closure Properties

® |s Lppq closed under complementation?

Given any DFA M = (K, X, 6, s, I'), create

M = (K', % ¢, s, F') such that L|M'| = L|M]

o {\'=K
o X' =3
o ) —

® ' =5

e ['=K—F




o7-25: Closure Properties

® |s Lppo closed under intersection?




o7-26: Closure Properties

® |s Lppo closed under intersection?

e AUB=ANB
e (diagram on board)

® We can also use a direct construction
e [, = all strings over {a, b} that begin with aa
e [, = all strings over {a, b} that end with aa
e Construct L; N Ls




o7-27: Closure Properties

Given DFA Ml — (K17 21,51, S1, Fl) and DFA
M, = (K, 35, 09, S0, F), create DFA M such that
L|M| = L{M,| N LM,




o7-28: Closure Properties

Given M1 — (Kl, 21,51781,F1) and
My = (K, X5, 09, o, F), create M such that
L[M] = L[Ml] M L[MQ]

° K = K| x K,

® E — 21 — 22

* 0= {(((g1; @), a), (01, 45)) : ((q1,0),q1) €
01, (42, @), 43) € 02}

® 5= (s1,5)

* F={(fi,fa): i€ F, fr € Fy}




07-29: State Minimization

® Possible to have several different DFA that all
accept the same language

® Redundant states — duplicate the effort of other
states




07-30: State Minimization

£
.

a,b

e




07-31: State Minimization

oG] D
@Q&g

a,b




07-32: State Minimization




07-33: State Minimization

® [wo states ¢; and g, are equivalent if:

* Every string that drives ¢; to an accept state
also drives ¢, to an accept state

* Every string that drives ¢, to an accept state
also drives ¢; to an accept state




07-34: State Minimization

® [wo states ¢; and g, of DFA M are equivalent if:
* Vw € 2*7 ((Qhw) |%}k\f (f17€)/\
(g2, w) =3 (fa,6) Afi € Fy) = fo € Fu




07-35: State Minimization

® [wo states ¢; and ¢, are equivalent with respect to
a string w if and only if

((qla w) H}kw (fla E)/\
(g2, w) =3 (f2,€) NfL € Fur) = fo € Fly
and
((q1, w) =3 (g3, €)A
(g2, w) =3 (qus€) Ngs & Fop) = qu & Fu

® [wo states ¢; and g, are equivalent if they are
equivalent with respect to all strings w € >.*




07-36: State Minimization

® How do we determine if two states ¢; and ¢, are
equivalent?

* Check to see if they are equivalent with respect
to strings of length 0




07-37: State Minimization

® How do we determine if two states ¢; and ¢, are
equivalent?

* Check to see if they are equivalent with respect
to strings of length 0

e Check to see if they are equivalent with respect
to strings of length 1




o7-38: State Minimization

® How do we determine if two states ¢; and ¢, are
equivalent?
* Check to see if they are equivalent with respect
to strings of length 0

e Check to see if they are equivalent with respect
to strings of length 1

* Check to see if they are equivalent with respect
to strings of length 2
.. and so on




07-39: State Minimization

® When are ¢; and ¢, equivalent with respect to all
strings of length 07




o7-40: State Minimization

® When are ¢; and ¢, equivalent with respect to all
strings of length 07

® Both ¢; and ¢, are accept states, or neither ¢; nor
¢o are accept states




o7-41: State Minimization

® [wo states ¢; and ¢, are equivalent with respect to
all strings of length n if ..

e Hint: Think inductively




o7-42: State Minimization

® [wo states ¢; and ¢, are equivalent with respect to
all strings of length n if ..

e Hint: Think inductively

* Hint 2: If we knew which states were equivalent
with respect to all strings of length n — 1 ...




07-43: State Minimization

® [wo states ¢; and ¢, are equivalent with respect to
all strings of length n if, for all a € X

* ((q1,a),q3) €9 0(q1,a) = g3

* ((q2.a),qu) €9 0(q2,a) = qu]
* g3 and g, are equivalent with respect to all
strings of length n — 1




o7-44: State Minimization

® Equivalence matrix £@:
o EW[;, 4] = 1iff ¢; and ¢; are equivalent with
respect to all strings of length <

* Only need to calculate upper triangle of matrix
(why?)

o Wi, 4] = 1iff ¢, and ¢; are equivalent with
respect to all strings (that is, if ¢; and g, are
equivalent)




07-45: State Minimization

® E(O):
o« EO[ 4] = ...




o7-46: State Minimization

o E(O):
o PO, 5] = 1if ¢; and g, are both accept states,
or both non-accept states

o PO, 5] = 0if g; is an accept state, and ¢; is
not an accept state

o EO[;, 4] = 0if ¢; is not an accept state, and g,
IS an accept state




o7-47: State Minimization

o (W[ j] =1if foralla €
* ((g:,0),q5) €9 0(gi, a) = qi]
* ((gj,a), @) €90 (g5, @) = q]
» B Vg, q] =




o7-48: State Minimization

® Creating E™):
e First, create £

foreo =0ton
forj=(t+1)ton
if (¢ € FAg e F)V( &g FAg & F)
El, 7] =1
else
Eli, j] =0




07-49: State Minimization

Repeat:
fore =0ton
forj=(+1)ton
foreach a € X
k=46(,a)
[ = 04(j, a)
if Bk, 1] ==
set Eli, 7] =0

Until no changes are made




07-50: State Minimization

® Given any DFA M, we can create an equivalent
DFA with the minimum number of states as follows:

e Calculate £, to find equivalent states

* While there is a pair ¢;, ¢; of equivalent states in
M
- Change all transitions into g; to transitions to

q;

- Remove ¢; and all transitions out of g,

* Finally do a DFS form the initial state, and
remove all states not reachable from the initial
state




o7-51: State Minimization Example




07-52: State Minimization Example

0/112|3[(4|5|6
0 O/1(1,0]1]1
1 0/0|1]0(0
2 11011
3 011
4 00
S 1




07-53: State Minimization Example

-
O o =W

OO = O s

O O = O O O

= OO =IO O O

gk~ OND =IO




o7-54: State Minimization Example

0(1]2[3|4]5|6
0 0/0;1{0(0|0
1 0(0|1({0]|O0
2 0(0]1]0
3 0(0|0
4 00
S 0




07-55: State Minimization Example




o7-56: State Minimization Example

_ a,b b
QNG WY,
b




o7-57: State Minimization Example

. a,b b
O—2b—()—20
a
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